For the First answer, It would be "A"
The for the next one the answer is "C"
I hope this helps. :)
Answer:
The average number of calories needed daily represents the average quantity of calories eliminated by human body due to metabolism and must be compensated by eating and drinking.
The amount of calories contained in the food we eat every day must represent the amount of calories eliminated by the body in that time to have a steady weight.
Explanation:
The average number of calories needed daily represents the average quantity of calories eliminated by human body due to metabolism and must be compensated by eating and drinking. If total quantity of calories in the food we consume every day is higher that the average number of calories needed daily, then weight increases by fat accumulation.
Answer:
4 %
2 ) 3.42 %
Explanation:
Sensitivity requirement of 4 milligram means it is not sensitive below 4 milligram or can not measure below 4 milligram .
Given , 4 milligram is the maximum error possible .
Measured weight = 100 milligram
So percentage maximum potential error
= (4 / 100) x 100
4 %
2 )
As per measurement
weight of 6 milliliters of water
= 48.540 - 42.745 = 5.795 gram
6 milliliters of water should measure 6 grams
Deviation = 6 - 5.795 = - 0.205 gram.
Percentage of error =(.205 / 6 )x 100
= 3.42 %
Answer:
A) Earth and the other inner planets have higher average surface temperatures than the outer planets.
Explanation:
the earth and the other inner planets have higher average surface temperatures than the outer planets.
The reason for this response is due to the distance between the sun and the respective planet, the source of energy generation is the sun and the only way in which the temperature increase of each planet is guaranteed is by radiation, the further away a planet is from its star, its temperature will decrease. Although it is also important to highlight the atmospheric composition of the planet if this planet in its stratosphere has high density clouds that do not allow the entry of solar radiation, the temperature of the planet's surface will not increase, independent of the distance from the sun, but these are more complex cases where specialists in that area enter to perform a study in detail.
a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

and solving for t we find

b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:

And by solving for t, we find
