(A)energy lost in the lever due to friction
(C)
visual estimation of height of the beanbag
(E)position of the fulcrum for the lever affecting transfer of energy
<span>The magnetic field does not continually spread outward from the wire.</span>
Answer:
It's 1.0000042 times longer in summer than in winter. It represents a 1.6 centimeters difference between seasons.
Explanation:
The linear coefficient of thermal expansion for steel is about
. From the equation of linear thermal expansion, we have:

Taking the winter day as the initial, and the summer day as the final, we can take the relationship between them:
![L_{summer}=L_{winter}[1+(1.2*10^{-7}\°C^{-1})(30\°C+5\°C)]\\\\L_{summer}=(1.0000042)L_{winter}](https://tex.z-dn.net/?f=L_%7Bsummer%7D%3DL_%7Bwinter%7D%5B1%2B%281.2%2A10%5E%7B-7%7D%5C%C2%B0C%5E%7B-1%7D%29%2830%5C%C2%B0C%2B5%5C%C2%B0C%29%5D%5C%5C%5C%5CL_%7Bsummer%7D%3D%281.0000042%29L_%7Bwinter%7D)
It means that the bridge is 1.0000042 times longer in summer than in winter. If we multiply it by the length of the bridge, we obtain that the difference is of about 1.6 centimeters between the two seasons.
From the first law of thermodynamics, we use the equation expressed as:
ΔH = Q + W
where Q is the heat absorbed of the system and W is the work done.
We calculate as follows:
ΔH = Q + W
ΔH = 829 J + 690 J = 1519 J
Hope this answers the question. Have a nice day.