Answer:
c)From high potential to low potential.
Explanation:
Given that
current is flowing through resister.
As we know that those quantity have direction as well as magnitude then these are called vector quantity and those quantity have only magnitude then they called scalar quantity.
As we know that current have direction as well as magnitude so current is a vector quantity.
Current flows from high potential to low potential.
I'm assuming the question is what is the robin's speed relative to to the ground...
Create an equation that describes its relative motion.
rVg = rVa + aVg
Substitute values.
rVg = 12 m/s [N] + 6.8 m/s [E]
Use vector addition.
| rVg | = √ | rVa |² + | aVg |²
| rVg | = √ 144 m²/s² + 46.24 m²/s²
| rVg | = √ 19<u>0</u>.24 m²/s²
| rVg | = 1<u>3</u>.78 m/s
Find direction.
tanФ = aVg / rVa
tanФ = 6.8 m/s / 12 m/s
Ф = 29°
Therefore, the velocity of the robin relative to the ground is 14 m/s [N29°E]
I think the correct answer from the choices listed above is option A. Wave motion is a movement of energy through space or a medium . Some waves are visible light waves, heat waves, sound waves and the like. Hope this answers the question.
We are given
E = <span>2.64 × 10-21 J
h = </span><span>6.6 × 10-34 J s
The options given below are frequencies, therefore, the question must be asking about the frequency fo the given wave
The equation is
E = h f
Simply substitute and solve for f which is the frequency
f = </span>2.64 × 10-21 J / 6.6 × 10-34 J s
f = <span>4.00 × 1012<span> hertz</span></span>