Answer:
the Law of multiple proportions
Explanation:
The law of multiple proportions states that, if two elements A and B combine to form more than one chemical compound, then the various masses of one of the elements A, which combines with a fixed mass of the element B are in simple multiple ratio.
This is demonstrated in the formation of nitrogen compounds such as NO and N2O when nitrogen combines with oxygen. This ratio is always constant.
Answer:
Explanation:
mass of the solution = volume x density = 200 x 1 = 200 gm
heat absorbed = m x s x Δ t , s is specific heat , Δt is rise in temperature
= 200 x 4.18 x ( 31.3 - 24.6 )
= 5601 J .
This is the enthalpy change required.
According to Bohr's model of the atom, the higher the orbital in which the electrons are found, the higher their energy or excitation state. Therefore, the electrons with the least amount of energy are those at the lowest orbitals, which are closer to the nucleus.
These orbitals are characterized by 4 quantum numbers, namely the principal quantum number (n), orbital angular momentum quantum number (l), the magnetic quantum number (ml), and the electron spin quantum number (ms). The principal quantum number reflects the distance of the electrons from the nucleus with n=1 as the orbital closest to the nucleus. Thus, according to Bohr's model, electrons in the orbital with n=1 have the lowest energy.
Volume of H2 produced = 57.6576 L
<h3>Further explanation</h3>
Given
23.17 g Be
Required
Volume of H2
Solution
Reaction
Be(s)+H2O(g)→BeO(s)+H2(g)
mol Be :
= 23.17 g : 9 g/mol
= 2.574
From the equation, mol H2 : mol Be = 1 : 1, so mol H2 = 2.574
Volume H2(assumed at STP, 1 mol=22.4 L) :
= 2.574 x 22.4 L
= 57.6576 L