N=6.98*10²⁴
Nₐ=6.022*10²³ mol⁻¹
n(Mg)=N/Nₐ
m(Mg)=n(Mg)M(Mg)=M(Mg)N/Nₐ
m(Mg)=24.3g/mol*6.98*10²⁴/(6.022*10²³mol⁻¹)=281.7 g
D. all of the above, although I do find it hard to believe something like flour would have a melting point, I looked up my answer to double check.
Answer:
A. there is an isotope of lanthanum with an atomic mass of 138.9
Explanation:
By knowing the different atomic masses of both Lanthanum atoms, we can not tell anything about their occurence in nature. Therefore, all the last three options are incorrect. Because, the atomic mass does not tell anything about the availability or natural abundance of an element.
Now, the isotopes of an element are those elements, which have same number of electrons and protons as the original element, but different number of neutrons. Therefore, they have same atomic number but, different atomic weight or atomic masses.
Hence, by looking at an elements having same atomic number, but different atomic masses, we can identify them as isotopes.
Thus, the correct option is:
<u>A. there is an isotope of lanthanum with an atomic mass of 138.9.</u>
Answer: What is required on a chemical label includes pictograms, a signal word, hazard and precautionary statements, the product identifier, and supplier identification.
Explanation:
The frequency of a photon of red light with wavelength 4.50 x 10−7m is 6.67 x 1014Hz