Answer:
2274 J/kg ∙ K
Explanation:
The complete statement of the question is :
A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at 15 °C. In a few minutes, she measures the final temperature of the system to be 40.0°C. What is the specific heat of the 400.0-g piece of metal, assuming that no significant heat is exchanged with the surroundings? The specific heat of this aluminum is 900.0 J/kg ∙ K and that of water is 4186 J/kg ∙ K.
= mass of metal = 400 g
= specific heat of metal = ?
= initial temperature of metal = 100 °C
= mass of aluminum cup = 100 g
= specific heat of aluminum cup = 900.0 J/kg ∙ K
= initial temperature of aluminum cup = 15 °C
= mass of water = 500 g
= specific heat of water = 4186 J/kg ∙ K
= initial temperature of water = 15 °C
= Final equilibrium temperature = 40 °C
Using conservation of energy
heat lost by metal = heat gained by aluminum cup + heat gained by water

The period of the wave would be halved
If a bus travels 30 km in 1/2 hr, then in one hr, he can travel twice the distance.
30*2=60 km
Final answer: 60 km per hr
Answer: The period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m is 5.73 sec.
Explanation:
Given: Mass = 5 kg
Spring constant = 6 N/m
Formula used to calculate period is as follows.

where,
T = period
m = mass
k = spring constant
Substitute the values into above formula as follows.

Thus, we can conclude that the period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m is 5.73 sec.