Answer:
Explanation:
energy stored in spring initially
= kinetic + potential energy of block + energy dissipated by friction
= 1/2 mv² + mgh + μ mgcosθ x d
m is mass , v is velocity at top position , h is vertical height , μ is coefficient of friction ,θ is angle of inclination of plane
= m (1/2 v² + gh + μ gcosθ x d )
= 1.05 ( .5 x 5.1² + 9.8 x 4.9 sin35 + .55 x 9.8 cos35 x 4.9 )
= 1.05 ( 13.005 + 27.543 + 21.635)
= 65.3 J .
Answer:

Explanation:
The standard form of the 2nd order differential equation governing the motion of mass-spring system is given by

Where m is the mass, ζ is the damping constant, and k is the spring constant.
The spring constant k can be found by




The damping constant can be found by



Finally, the mass m can be found by



Where g is approximately 32 ft/s²

Therefore, the required differential equation is


The initial position is

The initial velocity is

The answer is actually True, I just took the test and it was correct.
Answer:
Sohan told Geeta that i had done my work