F = ma
6.25 N = 0.4 kg · a
a = (6.25/0.4) m/s² since N=kg·m/s²
a = 15.625 m/s²
The answer is c) 15.6 m/s²
(Note that the mass of the soccer player is irrelevant.)
Answer:
14 m/s
Explanation:
The motion of the stone is a free fall motion, so an accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground. So, we can use the following SUVAT equation:

where
v is the final speed of the stone as it reaches the water
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
h = 10 m is the distance covered by the stone
Solving for v, we find

Answer:
Explanation:
A and B are in series , Total resistance = Ra + Rb
This resistance is in parallel with single resistor C
Equivalent resistance Re = Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )]
Now this combination is in series in single resistance D .
Total resistance = Rd + Re
= Rd + { Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )] }