An ion-dipole interaction is the result of an electrostatic interaction between a charged ion and a molecule that has a dipole. It is an attractive force that is commonly found in solutions, especially ionic compounds dissolved in polar liquids. A cation can attract the partially negative end of a neutral polar molecule, while an anion attracts the positive end of a polar molecule. Ion-dipole attractions become stronger as the charge on the ion increases or as the magnitude of the dipole of the polar molecule increases.
This force of attraction is between an ion and a charge , it is weaker force than covalent bond and ionic bond . EX - The ion dipole interaction takes place between water and sodium ion , in it there is a small charge on oxygen molecule in water which is attracted by sodium charge .
Most commonly found in solutions. Especially important for solutions of ionic compounds in polar liquids.
A positive ion (cation) attracts the partially negative end of a neutral polar molecule.
to learn more about dipole interactions:-
https://brainly.in/question/1157107
There are two big advantages of using molarity to express concentration. The first advantage is that it's easy and convenient to use because the solute may be measured in grams, converted into moles, and mixed with a volume.
The second advantage is that the sum of the molar concentrations is the total molar concentration. This permits calculations of density and ionic strength
Carbon-14, 14C, or radiocarbon, is a radioactive isotope of carbon with a nucleus containing 6 protons and 8 neutrons.
You need to know that the atomic number of nitrogen is 7, and you subtract that from the mass number to get16-7= 9.
Answer:
A covalent bond involves two nonmetals that share electrons.
Explanation:
Answer:
2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.
Explanation:
- For balancing a chemical equation, we should apply the law of conversation of mass. It states that the no. of atoms in the reactants side is equal to that of the products side.
So, the balanced equation:
<em>2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.</em>
It is clear that 2.0 moles of C₃H₇BO₃ is completely burned in 8 m oles of oxygen and produce 6 moles of CO₂, 7 moles of H₂O and 1 mole of B₂O₃.