F = m · a
In order to accelerate 82 kg upward at the rate of 3.2 m/s², a NET upward force of (82kg · 3.2m/s²) = 262.4 Newtons is required.
But if the object is on or near the surface of the Earth, then there's a downward force of (82kg · 9.8m/s²) = 803.6 N already acting on it because of gravity.
So you need to apply (803.6N + 262.4N) = <em>1,066 Newtons UPward</em>, in order to cancel its own weight and accelerate it upward at that rate.
In physics, there are already derived equation that are based on Newton's Law of Motions. The rectilinear motions at constant acceleration have the following equations:
x = v₁t + 1/2 at²
a = (v₂-v₁)/t
where
x is the distance travelled
v₁ is the initial velocity
v₂ is the final velocity
a is the acceleration
t is the time
Now, we solve first the second equation. Since it mentions that the car comes eventually to a stop, v₂ = 0. Then,
-5 = (0-v₁)/t
-5t = -v₁
v₁ = 5t
We use this new equation to substitute to the first one:
x = v₁t + 1/2 at²
15 = 5t(t) + 1/2(-5)t²
15 = 5t² - 5/2 t²
15 = 5/2 t²
5t² = 30
t² = 30/5 = 6
t = √6 = 2.45
Therefore, the time it took to travel 15 m at a deceleration of -5 m/s² is 2.45 seconds.
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
Answer:
The magnetic energy density is 
Explanation:
From the question we are told that
The earths magnetic field is 
Now

=> 
So


Generally the magnetic energy density is mathematically represented as

Here
is the permeability of free space with a constant value

substituting values for equation above

