1). From the frame of reference of a passenger on the airplane looking out of his window, the tree appears to be moving, at roughly 300 miles per hour toward the left of the picture.
2). The SI unit best suited to measuring the height of a building is the meter.
3). 'Displacement' is the straight-line distance and direction from the start-point to the end-point, regardless of the path that was followed to get there.
The ball started out in the child's hand, and it ended up 2 meters away from her in the direction of the wall. So the displacement of the ball from the beginning to the end of the story is: 2 meters toward the wall.
To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
Before 7 after 9. A pH smaller than 7 indicates acidity with 0 being completely acidic. A pH greater than 7 shows alkalinity with 14 being completely alkaline. 7 is neutral. Since NaOH is alkaline, adding it to a neutral substance would increase the pH and it would increase from 7 to 9.
Answer:
134r kgm^-1 or 1344 kg /m
Explanation:
Momentum is is given by:
p=mv
Where:
p is momentum, m is mass in kg and v is velocity in ms−1
p=120kg×11.2 m/ s= 1344 kgms=1344kgm^−1