Answer: a) 127 eV; b) there is no change of kinetic energy.
Explanation: In order to explain this problem we have to use the change of potentail energy ( conservative field) is equal to changes in kinetic energy. So for the proton ther move to lower potential then they gain kinetic energy from the electric field. This means the electric force do work in this trayectory and then the protons increased changes its speed.
If we replace the proton by a electron we have a very different situaction, the electrons are located in a lower potental then they can not move to higher potential if any external force does work on the system.
In resumem, the electrons do not move from a point with V=87 to other point with V=-40 V. The electric force point to high potential so the electrons can not move to lower potential region (V=-40V).
Answer:
The magnetic field will be
, '2d' being the distance the wires.
Explanation:
From Biot-Savart's law, the magnetic field (
) at a distance '
' due to a current carrying conductor carrying current '
' is given by

where '
' is an elemental length along the direction of the current flow through the conductor.
Using this law, the magnetic field due to straight current carrying conductor having current '
', at a distance '
' is given by

According to the figure if '
' be the current carried by the top wire, '
' be the current carried by the bottom wire and '
' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the
symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by
symbol.
Given
and 
Therefore, the magnetic field (
) at 'P' due to the top wire

and the magnetic field (
) at 'P' due to the bottom wire

Therefore taking the value of
the net magnetic field (
) at the midway between the wires will be

Answer:
14.8 m
Explanation:
S= ut +
a
where u = initial velocity
S= (0
)(2
) +
(7.4
)(2
)
S=
(7.4
)(2
)
S=14.8 m
The magnitude of electric field is produced by the electrons at a certain distance.
E = kQ/r²
where:
E = electric field produced
Q = charge
r = distance
k = Coulomb Law constant 9 x10^9<span> N. m</span>2<span> / C</span><span>2
Given are the following:
Q = </span><span>1.602 × 10^–19 C
</span><span>r = 38 x 10^-9 m
Substitue the given:
E = </span>
E = 998.476 kN/C