Answer:
These three factors are required for ionization potential or ionization energy.
Explanation:
Ionization potential refers to the amount of energy which is required for the removal of outermost electron of the atom. If the atom size is big so the outermost electron is far from the nucleus and low energy is required for its removal due to lower force of attraction between nucleus and outermost electron. If the nuclear charge is higher, so the electron is tightly held by the nucleus and require more energy for its removal. Nuclear charge means number of protons present in the nucleus.
Answer:
490 in^3 = 8.03 L
Explanation:
Given:
The engine displacement = 490 in^3
= 490 in³
To determine the engine piston displacement in liters L;
(NOTE: Both in^3 (in³) and L are units of volume). Hence, to find the engine piston displacement in liters (L), we will convert in^3 to liters (L)
First, we will convert in³ to cm³
Since 1 in = 2.54 cm
∴ 1 in³ = 16.387 cm³
If 1 in³ = 16.387 cm³
Then 490 in³ = (490 in³ × 16.387 cm³) / 1 in³ = 8029.63 cm³
∴ 490 in³ = 8029.63 cm³
Now will convert cm³ to dm³
(NOTE: 1 L = 1 dm³)
1 cm = 1 × 10⁻² m = 1 × 10⁻¹ dm
∴ 1 cm³ = 1 × 10⁻⁶ m³ = 1 × 10⁻³ dm³
If 1 cm³ = 1 × 10⁻³ dm³
Then, 8029.63 cm³ = (8029.63 cm³ × 1 × 10⁻³ dm³) / 1 cm³ = 8.02963 dm³
≅ 8.03 dm³
∴ 8029.63 cm³ = 8.03 dm³
Hence, 490 in³ = 8029.63 cm³ = 8.03 dm³
Since 1L = 1 dm³
∴ 8.03 dm³ = 8.03 L
Hence, 490 in³ = 8.03 L
I’m pretty sure it’s true
Answer:According to Boyle's Law, the volume of a gas is inversely proportional to the pressure of a gas. Therefore, increasing the volume has the same effect as decreasing the pressure. If the volume in which a gas reaction takes place is DECREASED, the reaction will shift toward the side with fewer moles of GAS.
Explanation: