Answer is: pH of aniline is 9.13.<span>
Chemical reaction: C</span>₆H₅NH₂(aq)+
H₂O(l) ⇌ C₆H₅NH₃⁺(aq) + OH⁻(aq).
pKb(C₆H₅NH₂) = 9.40.
Kb(C₆H₅NH₂) = 10∧(-9.4) = 4·10⁻¹⁰.
c₀(C₆H₅NH₂) = 0.45 M.
c(C₆H₅NH₃⁺) = c(OH⁻) = x.
c(C₆H₅NH₂) = 0.45 M - x.
Kb = c(C₆H₅NH₃⁺) · c(OH⁻) / c(C₆H₅NH₂).
4·10⁻¹⁰ = x² / (0.45 M - x).
Solve quadratic equation: x = c(OH⁻) = 0.0000134 M.
pOH = -log(0.0000134 M.) = 4.87.
pH = 14 - 4.87 = 9.13.
<span>Kelly has some sand in a bucket, but she thinks that there may be some salt mixed in with her sand. How can she determine if there is salt in the sand?</span><span>
Answer: If she puts water in the bucket, the salt will dissolve.
Hope This Helped! :3</span>
You have the stoichiometric equation. This tells you unequivocally that an
18
⋅
g
mass of water, 1 mole, reacts with a
56.07
⋅
g
mass of quicklime to form a
74.09
⋅
g
mass of slaked lime.
If you don't from where I am getting these numbers, you should know, and someone will be willing to elaborate.
Here, you have formed
6.21
⋅
m
o
l
of quicklime which requires stoichiometric lime AND water. And thus you need a mass of
6.21
⋅
m
o
l
×
18.01
⋅
g
⋅
m
o
l
−
1
water
≅
88
⋅
g
.
In practice, of course I would not weigh out this mass. I would just pour
100
−
200
⋅
m
L
of water into the lime.
Answer: The Answers are: 0.31g & 0.011mol & 3.34g & 0.016mol.
Explanation: Solved in the attached picture.