Kc = concentrations of product / concentrations of reactant
Kc = [Br₂] [Cl₂]₃ / [BrCl₃]₂
What is the equilibrium constant?
The relationship between a reaction's products and reactants with regard to a certain unit is expressed by the equilibrium constant(K) This article introduces the mathematics needed to determine the partial pressure equilibrium constant as well as how to formulate expressions for equilibrium constants. By allowing a single reaction to reach equilibrium and then measuring the concentrations of each chemical participating in that reaction, one can determine the numerical value of an equilibrium constant. it is the ratio of product concentrations to reactant concentrations. The equilibrium constant for a given reaction is unaffected by the initial concentrations because the concentrations are measured at equilibrium.
To learn more about the equilibrium constant, visit:
brainly.com/question/19340344
#SPJ4
The elements in each group have the same number of electrons in the outer orbital. Or also called valence electrons. Khan academy has a great video online explaining why this happens. (It only happens for main group elements). Here is a link (sorry you can’t click it in Brainly) https://www.khanacademy.org/science/chemistry/periodic-table/copy-of-periodic-table-of-elements/v/periodic-table-valence-electrons. Feel free to message me for a better explanation, I would explain now but I’m not sure how much you know about this. If you know how to write an electron configuration you can see how all the electron configurations for the same group (not the transitional metals only the main groups) have the same number of valence electrons. I hope that helped, sorry I was vague about the explanation :)
C. Represents an oxidation-reduction reaction
Answer:
The reason is because Flagstaff is at a higher elevation than Phoenix.
Explanation:
The air is thinner at higher elevations. You can google Flagstaff's elevation compared to Phoenix but the simple answer is that air is thinner at higher elevations and some people used to 'thicker' air find it harder to breath, especially after some strenuous exercise.
Answer:
1.64 moles O₂
Explanation:
Part A:
Remember 1 mole of particles = 6.02 x 10²³ particles
So, the question becomes, how many '6.02 x 10²³'s are there in 9.88 x 10²³ molecules of O₂?
This implies a division of given number of particles by 6.02 x 10²³ particles/mole.
∴moles O₂ = 9.88 x 10²³ molecules O₂ / 6.02 x 10²³ molecules O₂ · mole⁻¹ = 1.64 mole O₂
_______________
Part B needs an equation (usually a combustion of a hydrocarbon).