1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erik [133]
4 years ago
6

If a golf ball and a ping-pong ball both move with the same kinetic energy, which has the greater speed? 1. the golf ball 2. can

not be determined 3. the ping-pong ball 4. the two balls have the same speed.
Physics
1 answer:
schepotkina [342]4 years ago
4 0
Think about it like this, the more mass there is, the faster its going to go. If you took a golf ball and a ping pong ball and you held them each separately, you would notice that the golf ball is heavier. If they move with the same kinetic energy, but the golf ball WEIGHS more, then the golf ball will have the greater speed. If you think about it, the ping pong ball may be taking its time to get to wherever its going. 
You might be interested in
A 25-kg child sits at the top of a 4-meter slide. After sliding down, the child is traveling at 5 m/s. How much PE does he start
Semmy [17]

Daniddmelo says it right there, don't know why he got reported.

The potential energy (PE) is mass x height x gravity. So it would be 25 kg x 4  m x 9.8 = 980 joules. The child starts out with 980 joules of potential energy. The kinetic energy (KE) is (1/2) x mass x velocity squared. KE = (1/2) x 25 kg x 5 m/s2 = 312.5 joules. So he ends with 312.5 joules of kinetic energy. The Energy lost to friction =  PE - KE. 980- 312.5 = 667.5 joules of energy lost to friction.

Please don't just copy and paste, and thank you Dan cause you practically did it I just... elaborated more? I dunno. 

4 0
3 years ago
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
4 years ago
If your friend drops a chocolate bar to you from a height of 5.0 m above your hands,
Sladkaya [172]

Answer:

<h3>1.01 s</h3>

Explanation:

Using the equation of motion S = ut+1/2gt² to solve the problem where;

u is the initial velocity of the chocolate = 0m/s

t is the time taken

g is the acceleration due to gravity = 9.81m/s²

S is the height of fall = 5.0m

Substituting the given parameter into the formula to get the time t we have;

5 = 0(t)+1/2(9.81)t²

5 = 4.905t²

t² = 5/4.905

t² = 1.019

t = √1.019

t = 1.009 secs

<em>Hence it will take 1.01 secs for me to catch the chocolate bar</em>

6 0
4 years ago
What is a linear motion
nirvana33 [79]
Linear motion (also called rectilinear motion) is a motion along a straight line, and can therefore be described mathematically using only one spatial dimension.
4 0
3 years ago
A trumpet makes sound when the lips of the musician vibrate. True False
Allushta [10]
I think is True! Is the best answer. Because the trumpet it make them sounds like the lips with the musician and it vibrate.
4 0
3 years ago
Read 2 more answers
Other questions:
  • Which particle is used as a beam to treat cancer? electron neutron proton
    8·2 answers
  • The correctly balanced equation for H2O2 → H2O + O2 is
    10·1 answer
  • What a dynamics stretch is​
    11·1 answer
  • A 72.9 kg man stands on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of
    10·1 answer
  • A cosmic ray electron moves at 7.50×106 m/s perpendicular to the Earth’s magnetic field at an altitude where field strength is 1
    10·1 answer
  • A student eats a tasty school lunch containing 700. Calories. (One food Calorie = 4186 joules.) Due to basal metabolism, the stu
    9·1 answer
  • Please help me with question 16 and question 17 . Thank you
    5·1 answer
  • In a Broadway performance, an 85.0-kg actor swings from a R = 3.90-m-long cable that is horizontal when he starts. At the bottom
    7·1 answer
  • What happens to the force of gravity between two masses if the mass of one of the objects decreases?
    6·2 answers
  • If the mass of the sun is 2x, at least one planet will fall into the habitable zone if I place a planet in orbits___, ____, ____
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!