Answer:
the distance that the object is raised above its initial position is 5.625 m.
Explanation:
Given;
applied effort, E = 15 N
load lifted by the ideal pulley system, L = 16 N
distance moved by the effort, d₁ = 6 m
let the distance moved by the object = d₂
For an ideal machine, the mechanical advantage is equal to the velocity ratio of the machine.
M.A = V.R

Therefore, the distance that the object is raised above its initial position is 5.625 m.
Explanation:
Starting position at x = 16m
Ending position at x = -25m
Time of flight = 4s
Unknown:
Distance flown = ?
Displacement = ?
Speed = ?
Velocity = ?
Solution:
To find the distance flown, we should understand that the body is moving on the x - plane;
So distance = 16 + 25 = 41m
Displacement is 41m to the left or -x axis
Speed is the distance divided by the time taken;
Speed =
=
= 10.25m/s
Velocity is 10.25m/s along -x axis
Answer: 0.169 (3 s.f.)
Explanation:
Force = 76 N
Spring constant = 450 N/m
Extension/displacement = x
Hooke's law states that: F = kx
Therefore, 76 = 450 X x
76/450 = x
0.169 (3 s.f.) = x
Answer: When the electric field due to one is a maximum, the electric field due to the other is also a maximum, and this relation is maintained as time passes. They alternatively reinforce and cancel each other.
Explanation:
In a wave, the phase, is an arbitrary time reference, used to locate a given point of the wave in time, within a cycle.
Two waves can travel at the same speed, or even have the same wavelength, but this is not enough to be sure that at a given point in time, both waves will be in their maximum, as it only can be determined from the phase of the waves.
So, only when the waves reach at the same point in time at the same amplitude, we can say that they arrive in phase, in a constructive interference.