1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goryan [66]
3 years ago
10

The graphic organizer above shows that the properties of waves are influenced by the energy of waves. Name 2 properties of waves

that affect the energy of waves.

Physics
1 answer:
Stells [14]3 years ago
3 0
Amplitude: the height of the wave<span>, measured in meters
</span><span>Wavelength: the distance between adjacent crests, measured in meters
</span>
You might be interested in
What was anton van leeuwenhoek famous for
monitta

Answer:

He is known as the first microbiologist and also “the Father of Microbiology” because he was the first to observe bacteria underneath a microscope. He made many other significant discoveries in the field of biology and also made important changes to the microscope.

Explanation:

hope this helps. and if it did pls mark brainliest :)

3 0
3 years ago
To make a given sound seem twice as loud, how should a musician change the intensity of the sound?
Serhud [2]

Answer:

C. Quadruple the intensity

Explanation:

The intensity of the sound is proportional to square of amplitude of the sound.

I ∝ A²

\frac{I_1}{A_1^2} = \frac{I_2}{A_2^2}\\\\I_2 = \frac{I_1A_2^2}{A_1^2}

When the given sound is twice loud as the initial value, then the new amplitude is twice the former.

A₂ = 2A₁

I_2 = \frac{I_1A_2^2}{A_1^2} \\\\I_2 = \frac{I_1(2A_1)^2}{A_1^2} \\\\I_2 = \frac{4I_1A_1^2}{A_1^2}\\\\ I_2 = 4I_1

Thus, to make a given sound seem twice as loud, the musician should Quadruple the intensity

3 0
3 years ago
Please answer ASAP .
Arisa [49]

Answer:

Explanation:

a = gsinθ

a = 9.8sin30

a = 4.9 m/s²

v² = u² + 2as

v² = 0² + 2(4.9)(10)

v² = 98

v = √98 = 9.8994949...

v = 9.9 m/s

8 0
3 years ago
Narysuj wykres zależności v(t) jeśli w chwili początkowej t=0 V=10m/s w każdej sekundzie szybkość zmniejsza się o 1m/s . Po jaki
irina1246 [14]

1) See graph in attachment

2) 10 s

3) 50 m

Explanation:

1)

In this problem, we have an object initially moving with a velocity of

v = 10 m/s

when the time is

t = 0 s

Then, we are told that the speed of the object is decreasing by 1 m/s every  second. This means that on a velocity-time graph, the motion will be represented by a straight line, starting from v = 10 when t = 0, and decreasing by 1 m/s every second.

The result can be found in the graph in attachment.

Moreover, we can also infer that the motion of the object is accelerated (because velocity is changing), and that the acceleration is constant and it is equal to

a=1 m/s^2

which is equivalent to the gradient of the line in the velocity-time graph.

2)

In this part, we want to find after what time the body will stop its motion.

To do that, we can use the following suvat equation:

v=u+at

where

v is the final velocity

u is the initial velocity

a is the acceleration

t is the time

In this problem:

u = 10 m/s is the initial velocity of the body

a=-1 m/s^2 is the acceleration

v = 0 m/s, because we want to find the time T at which the body will stop

Re-arranging the equation, we find:

T=-\frac{u}{a}=-\frac{10}{-1}=10 s

3)

In order to find the total distance covered by the body during its accelerated motion, we have to use another suvat equation:

s=ut+\frac{1}{2}at^2

where

s is the distance covered

u is the initial velocity

t is the time

a is the acceleration

In this problem:

u = 10 m/s is the initial velocity

a=-1 m/s^2 is the acceleration

t = 10 s is the time it takes for the body to stop (found in part 2)

Solving for s, we find the distance covered:

s=(10)(10)+\frac{1}{2}(-1)(10)^2=50 m

7 0
3 years ago
If a weight hanging on a string of length 5 feet swings through 5^\circ on either side of the vertical, how long is the arc thro
Zielflug [23.3K]
<span>First we can find the circumference of the whole circle with a radius of 5 feet. circumference = 2 pi radius circumference = (2 pi) (5 feet) circumference = (10 pi) feet From one high point to the other high point, the string moves through an angle of 10 degrees. Since a full circle is 360 degrees, this angle is 1/36 of a full circle. Therefore, the arc length is 1/36 of the whole circumference. arc length = (1/36) (circumference) arc length = (1/36) (10 pi) feet arc length = 0.873 feet</span>
7 0
3 years ago
Other questions:
  • The anion formed from an oxygen atom is called a
    7·1 answer
  • An environmental group wants to sink a ship off the coast to create an artificial reef. They find that they must get a permit fr
    9·2 answers
  • The origin of the universe remains a question. The most accepted theory, that suggests our universe started as a hot, dense, com
    5·2 answers
  • A woman stands on a bathroom scale in a motionless elevator. When the elevator begins to move, the scale briefly reads only 0.90
    10·1 answer
  • Explain why Pluto has been re-categorized as a dwarf planet.
    5·1 answer
  • What's wrong with the following statement? “The racing car turns around
    11·1 answer
  • Many firms develop a formal _____ to answer the question: who is your target market and how do you plan to reach them?
    6·1 answer
  • If a 4 engine jet accelerates down a runway at 8.7 m/s^2, Suppose now that all 4 engins are operational on the jet from the prev
    13·1 answer
  • A 2300 kg sailboat is moving west at 5.5 m/s when an eastward wind
    7·1 answer
  • _______is the resistance to motion offered by an object sliding over a surface
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!