<span>pseudoscience includes beliefs theories, or practices that have been or are considered scientific, but have no basis in scientific fact.
This could mean the were disproved scientifically, can't be tested or lack evidence to support them.
Examples:Channeling- involves communicating with a spirit through a person
Astrology- beliefs that humans are affected by the position of celestial bodies
</span>
Prior to determining the
experimental design, a scientist typically forms a hypothesis. The answer is
letter B. this is to prepare the scientist, the possible outcome of their
research before the experimental design whether they are wrong or not.
Observer A is moving inside the train
so here observer A will not be able to see the change in position of train as he is standing in the same reference frame
So here as per observer A the train will remain at rest and its not moving at all
Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body
So here observer B will see the actual motion of train which is moving in forward direction away from the platform
Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction
So the distance between them will decrease at faster rate
Now as per Newton's II law
F = ma
Now if train apply the brakes the net force on it will be opposite to its motion
So we can say
- F = ma
so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate
It is not affected by the gravity because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train
So there is no effect on train motion
<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>