Distance, since distance represents how far something has travelled, which would be in our case 2.5m.
The problem states that the distance travelled (d) is
directly proportional to the square of time (t^2), therefore we can write this in
the form of:
d = k t^2
where k is the constant of proportionality in furlongs /
s^2
<span>Using the 1st condition where d = 2 furlongs, t
= 2 s, we calculate for the value of k:</span>
2 = k (2)^2
k = 2 / 4
k = 0.5 furlongs / s^2
The equation becomes:
d = 0.5 t^2
Now solving for d when t = 4:
d = 0.5 (4)^2
d = 0.5 * 16
<span>d = 8 furlongs</span>
<span>
</span>
<span>It traveled 8 furlongs for the first 4.0 seconds.</span>
Rocks and sediments I believe
The gravitational force between <em>m₁</em> and <em>m₂</em> has magnitude

while the gravitational force between <em>m₁</em> and <em>m₃</em> has magnitude

where <em>x</em> is measured in m.
The mass <em>m₁</em> is attracted to <em>m₂</em> in one direction, and attracted to <em>m₃</em> in the opposite direction such that <em>m₁</em> in equilibrium. So by Newton's second law, we have

Solve for <em>x</em> :

The solution with the negative square root is negative, so we throw it out. The other is the one we want,

F=ma
8480=26.5m
m=8480/26.5
m=320
The mass of the cart is 320kg.