Answer:
toward the center
Explanation:
Before answering, let's remind the first two Newton Laws:
1) An object at rest tends to stay at rest and an object moving at constant velocity tends to continue its motion at constant velocity, unless acted upon a net force
2) An object acted upon a net force F experiences an acceleration a according to the equation

where m is the mass of the object.
In this problem, we have an object travelling at constant speed in a circular path. The fact that the trajectory of the object is circular means that the direction of motion of the object is constantly changing: this means that its velocity is changing, so it has an acceleration. And therefore, a net force is acting on it. The force that keeps the object travelling in the circular path is called centripetal force, and it is directed towards the center of the circle (because it prevents the object from continuing its motion straight away).
So, the correct answer is
toward the center
Answer:
v₂ = 7.6 x 10⁴ m/s
Explanation:
given,
speed of comet(v₁) = 1.6 x 10⁴ m/s
distance (d₁)= 2.7 x 10¹¹ m
to find the speed when he is at distance of(d₂) 4.8 × 10¹⁰ m
v₂ = ?
speed of planet can be determine using conservation of energy
K.E₁ + P.E₁ = K.E₂ + P.E₂





v₂ = 7.6 x 10⁴ m/s
Light is refracted when it crosses the interface from air to glass in which it moves more slowly.
Since the light speed changes at the interface, the wave length of the light must change too. The wave length decreases as the light enter the medium and the light wave changes direction.
Answer:
4.16m/s²
Explanation:
According to Newtons second law;

Fm is the moving force
is the coefficient of kinetic friction between the child and the slide
m is the mass
g is the acceleration due to gravity
a is the acceleration of the child
Substitute the given values and get the acceleration as shown;
35(9.8)sin27.5 - 0.415(35)(cos27.5) = 35a
158.38-12.88 = 35a
145.49 = 35a
a = 145.49/35
a = 4.16m/s²
Hence the acceleration of the body is 4.16m/s²
Answer:
The energy dissipated as the puck slides over the rough patch is 1.355 J
Explanation:
Given;
mass of the hockey puck, m = 0.159 kg
initial speed of the puck, u = 4.75 m/s
final speed of the puck, v = 2.35 m/s
The energy dissipated as the puck slides over the rough patch is given by;
ΔE = ¹/₂m(v² - u²)
ΔE = ¹/₂ x 0.159 (2.35² - 4.75²)
ΔE = -1.355 J
the lost energy is 1.355 J
Therefore, the energy dissipated as the puck slides over the rough patch is 1.355 J