Answer:
Crystallization of tetrafloroethane C₂F₄ is easier than styrene C₈H₈ .
Explanation:
Crystallization -
crystallization is a process in which atoms are restructured in the form of crystals , some of the ways by which crystals form are melting , precipitating from a solution.
we need to consider the melting point of the given compounds ,
the melting point of styrene C₈H₈ is -30 °C
whereas the melting point of tetrafloroethane C₂F₄ is -140 °C ( 130.7 K ) since the melting point of C₂F₄ is less than C₈H₈ so it is easy to melt C₂F₄.
Hence it is easier to crystallize C₂F₄ .
Answer:
B
B
A
C
D
Explanation:
I think dont take my word for though
Some household items that contain acids include: yogurt, vinegar,lemon juice, citric acid, apples, jelly, pineapples, cranberry sauce, milk, and batteries.
The neutral substances that are the most well known are: water, table salt, sugar solution and cooking oil.
Answer:
it's C
Explanation:
the equilibrium sytem will shift to remove more of what was removed
Answer : The enthalpy of combustion per mole of
is -2815.8 kJ/mol
Explanation :
Enthalpy change : It is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
The equilibrium reaction follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(n_{(CO_2)}\times \Delta H^o_f_{(CO_2)})+(n_{(H_2O)}\times \Delta H^o_f_{(H_2O)})]-[(n_{(C_6H_{12}O_6)}\times \Delta H^o_f_{(C_6H_{12}O_6)})+(n_{(O_2)}\times \Delta H^o_f_{(O_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%28n_%7B%28CO_2%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%29%7D%29%2B%28n_%7B%28H_2O%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%29%7D%29%5D-%5B%28n_%7B%28C_6H_%7B12%7DO_6%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_6H_%7B12%7DO_6%29%7D%29%2B%28n_%7B%28O_2%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(6\times -393.5)+(6\times -285.8)]-[(1\times -1260)+(6\times 0)]=-2815.8kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%286%5Ctimes%20-393.5%29%2B%286%5Ctimes%20-285.8%29%5D-%5B%281%5Ctimes%20-1260%29%2B%286%5Ctimes%200%29%5D%3D-2815.8kJ%2Fmol)
Therefore, the enthalpy of combustion per mole of
is -2815.8 kJ/mol