Just use the Heisenberg Uncertainty principle:
<span>ΔpΔx = h/2*pi </span>
<span>Δp = the uncertainty in momentum </span>
<span>Δx = the uncertainty in position </span>
<span>h = 6.626e-34 J s (plank's constant) </span>
<span>Hint: </span>
<span>to calculate Δp use the fact that the uncertainty in the momentum is 1% (0.01) so that </span>
<span>Δp = mv*(0.01) </span>
<span>m = mass of electron </span>
<span>v = velocity of electron </span>
<span>Solve for Δx </span>
<span>Δx = h/(2*pi*Δp) </span>
<span>And that is the uncertainty in position. </span>
In a physical change the appearance or form of the matter changes but the kind of matter in the substance does not. However in a chemical change, the kind of matter changes and at least one new substance with new properties is formed. Hope this helps!
Incomplete question. Full question reads;
Darwin developed the theory of evolution to explain why there are so many different kinds of living things. He could easily observe that offspring of any animals were slightly different from their parents and that this could allow for big changes over thousands of years. He did not know that genes caused the differences. Genes are now very important in the modern theory of evolution.
What most likely led to a change in the widely accepted theory of evolution?
Answer:
<u>new experiments involving genes and evolution </u>
<u>Explanation:</u>
Indeed, the original theory of evolution has experienced several changes in its acceptance because of its imperfect and wrong assumptions not based on generally acceptable scientific facts,
Hence, new experiments involving genes and evolution has led to a change (disagreements and few agreements) in the widely accepted theory of evolution.