Answer:
HCI(aq)+CH3COONa(s) ----> CH3COOH(aq)+NaCl(s)
NaOH(aq)+CH3COOH(aq) ----> CH3COONa(s)+H2O(l)
Explanation:
A buffer is a solution that resists changes in acidity or alkalinity. A buffer is able to neutralize a little amount of acid or base thereby maintaining the pH of the system at a steady value.
A buffer may be an aqueous solution of a weak acid and its conjugate base or a weak base and its conjugate acid.
The equations for the neutralizations that occurred upon addition of HCl or NaOH are;
HCI(aq)+CH3COONa(s) ----> CH3COOH(aq)+NaCl(s)
NaOH(aq)+CH3COOH(aq) ----> CH3COONa(s)+H2O(l)
Mass of CaCl₂ = 0.732 g
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.

Answer:

Explanation:
The hydrocarbon shown has a double bond. Hydrocarbons with double bonds are known as alkenes.
Cyclic alkanes have cyclic structure.
Alkanes only have single bonds.
Alkynes have triple bonds.
Answer:

Explanation:
= Initial pressure = 931 torr = 
= Final pressure = 113 kPa
= Initial volume = 350 mL
= Final volume
From the Boyle's law we have

The volume the gas would occupy is
.