<span>Answer is: atomic number
of resulting atom is 88.
Alpha particle is nucleus of a helium-4 atom, which is made of
two protons and two neutrons.
Nuclear reaction: ²³</span>²Th → ²²⁸Ra + α (alpha
particle).
Alpha
decay is radioactive decay in which an atomic
nucleus emits an alpha particle (helium nucleus) and transforms
into an atom with an atomic number that is reduced by
two and mass number that is reduced by four.
hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.
<em><u>pl</u></em><em><u>ease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainliest</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>f</u></em><em><u>ollow</u></em><em><u> me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Burning a magnesium ribbon in the air is an addition reaction while heating potassium manganate 7 is a decomposition reaction.
<h3>Addition and decomposition reactions</h3>
Magnesium burns in air to produce magnesium oxide as follows:
Potassium manganate 7 burns to produce multiple products as follows:
Thus, the MgO will be heavier than Mg. On the other hand, will be less heavy than .
More on reactions can be found here: brainly.com/question/17434463
#SPJ1
Answer:Conduction: Touching a stove and being burned. Ice cooling down your hand
Convection: Hot air rising, cooling, and falling (convection currents)
Radiation: Heat from the sun warming your face
Explanation:
Answer: 37.5grams of Cu(NO3)2
Cu(1mol) + 2HNO3(2mol) —> Cu(NO3)2 + H2
<em>125 grams of Cu(1mol) reacts with 75 grams of HNO3(2mol)</em>
<em><u>HNO3 is the limiting substance, therefore, 75 grams is the limiting quantity.</u></em>
<em>Therefore, 2mol of HNO3 forms 1mol of Cu(NO3)2</em>
<em>75 grams of HNO3 forms...75grams x 1mol/2mol = 37.5 grams of Cu(NO3)2</em>