1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allisa [31]
3 years ago
11

A 4.0×1010kg asteroid is heading directly toward the center of the earth at a steady 16 km/s. To save the planet, astronauts str

ap a giant rocket to the asteroid perpendicular to its direction of travel. The rocket generates 5.0×109N of thrust. The rocket is fired when the asteroid is 4.0×106km away from earth. You can ignore the earth’s gravitational force on the asteroid and their rotation about the sun. Part A: If the mission fails, how many hours is it until the asteroid impacts the earth? Part B: The radius of the earth is 6400 km. By what minimum angle must the asteroid be deflected to just miss the earth? Part C: What is the actual angle of deflection if the rocket fires at full thrust for 300 s before running out of fuel?
Physics
1 answer:
blondinia [14]3 years ago
8 0

Answer:

a. t = 69.4 hr = 2.89 days

b. theta = 91.67*10^-3 degrees

c.  deflection_angle = 0.134 degrees

Explanation:

a).

The asteroid impacts the earth in t

t = x/v = (4.0*10^6 km)/(16 km/sec)

t = 2.5 * 10^5 sec

t = 69.4 hr = 2.89 days

b).

tan(theta) = 6400 km/(4.0*10^6 km)

tan(theta) = 1.6*10^-3

theta = arctan(1.6*10^-3)

theta = 1.6*10^-3 radians  (for small angles, tan(theta) ~= theta)

theta = 91.67*10^-3 degrees

c).

v_minimum = 6400 km/(2.5 * 10^5 sec)

v_minimum = 25.6 m/s

Using F = m*a, we can calculate the acceleration of the asteroid due to the rocket's thrust:

5.0*10^9 N = 4.0*10^10 kg * a

a = (5.0*10^9 N)/(4.0*10^10 kg)  

a = 0.125 m/s^2

The transverse velocity after 300 seconds of this acceleration is:

v_transverse = a*t = 0.125 m/s^2 * 300 s

v_transverse = 37.5 m/s = 37.5*10^-3 km/s

tan(deflection_angle) = v_transverse/(20 km/s)

tan(deflection_angle) = (37.5*10^-3 km/s)/(16 km/s) = 2.34^-3

deflection_angle = arctan(2.34*10^-3)  

deflection_angle = 2.34*10^-3 radians = 0.134 degrees

v_transverse/(16 km/s) > (6400km)/(5.0*10^6 km)  

(note that the right hand side if this inequality is tan(theta) calculated above)

v_transverse > 23.704 m/

You might be interested in
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 5.00 cm.
8_murik_8 [283]

The electric potential is a scalar unit, so we don't have to struggle with the vectors. The formula that gives electric potential is

V = \frac{1}{4\pi\epsilon_0}\frac{q}{r}

1) At point a, the electric potential is the sum of the potentials due to q1 and q2. So,

V_a = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

The distance from the center of the square to one of the corners is \sqrt2 L/2 = 0.035m

V_a = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.035} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.035} = 0

The answer is zero, because the point charges are at equal distances and their magnitudes are also equal but their directions are opposite.

2) V_b = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

r_1 = 0.05\sqrt2m\\r_2 = 0.05m

V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05\sqrt2} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.05}\\V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05} (\frac{1}{\sqrt2}-1)\\V_b = \frac{1}{4\pi\epsilon_0} (4\times 10^{-5})(-0.29)\\V_b = (-\frac{2.9\times10^{-6}}{\pi\epsilon_0})[tex]3) The work done on q3 by q1 and q2 is equal to the difference between  energies. This is the work-energy theorem. So,[tex]W = U_b - U_a

U = \frac{1}{4\pi\epsilon_0}\frac{q_1q_3}{r} = Vq_3

W = q_3(V_b - V_a) = q_3(V_b - 0)\\W = (-2\times10^{-6})(-\frac{2.9\times10^{-6}}{\pi\epsilon_0})\\W = \frac{5.8\times10^{-12}}{\pi\epsilon_0}

4 0
3 years ago
Why the change of the pressure and temperature affect the velocity of the sound ​
Marysya12 [62]

<h2>\large{\underbrace{\underline{\fcolorbox{White}{aqua}{\bf{ANSWER♥︎}}}}}</h2>

<u>Air pressure has no effect at all in an ideal gas approximation. This is because pressure and density both contribute to sound velocity equally, and in an ideal gas the two effects cancel out, leaving only the effect of temperature. Sound usually travels more slowly with greater altitude, due to reduced temperature.</u>

5 0
2 years ago
A 15-kg ball is tossed up into the air. The ball is 2 meters off the ground traveling 4 m/s. What is the potential energy? A. 29
Sladkaya [172]

Answer: 0j

Explanation:

At that point potential energy is zero and kinetic energy is maximum.. P. E=mgh=0

7 0
3 years ago
According to the humanistic perspective, what motivates individuals?
Paraphin [41]
The desire for positive reinforcement.
8 0
3 years ago
Read 2 more answers
Your body also transforms what energy
natita [175]
Chemical energy is transformed in your body
4 0
3 years ago
Other questions:
  • Describe Newton's First Law of motion. Provide an example to support your explanation. (4 points
    15·2 answers
  • How can friction help you in your daily life?
    15·2 answers
  • Which of the following is/are the best example(s) of elastic collision(s)? Explain why you chose your answer(s).
    5·1 answer
  • If you were to separate all of the electrons and protons in 1.00 g (0.001 kg) of matter, you’d have about 96,000 C of positive c
    13·1 answer
  • What is latent heat? A. energy released or absorbed to change the kinetic energy of a substance B. energy released or absorbed t
    6·2 answers
  • Suppose that you release a small ball from rest at a depth of 0.730 m below the surface in a pool of water. If the density of th
    11·1 answer
  • Two clowns are launched from the same spring-loaded circus cannon with the spring compressed the same distance each time. Clown
    6·1 answer
  • An elevator filled with passengers has a mass of 1663 kg. (a) The elevator accelerates upward from rest at a rate of 1.20 m/s2 f
    9·1 answer
  • Particles in which state of matter are the most likely to interact with each other to cause a chemical reaction?
    8·1 answer
  • A merry-go-round rotates at the rate of 0.17 rev/s with an 79 kg man standing at a point 1.6 m from the axis of rotation.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!