Answer:
a) Temperatura, b) Temperature, c) Constant
, d) None of these
, e) Gibbs enthalpy and free energy (G)
Explanation:
a) the expression for ideal gases is PV = nRT
Temperature
b) The internal energy is E = K T
Temperature
c) S = ΔQ/T
In an isolated system ΔQ is zero, entropy is constant
Constant
d) all parameters change when changing status
None of these
e) Gibbs enthalpy and free energy
According to wikipedia <em>a mid-ocean ridge is an underwater mountains system formed by tectonic plates.
</em>Happy studying!<em>
</em>
Answer:
It will take you 30.8 s to travel the 120 m of the ramp.
Explanation:
Hi there!
The equation for the position of an object moving in a straight line is:
x = x0 + v * t
Where:
x = position at time t
x0 = initial position
v = velocity
t = time
In this case, we will consider the start of the ramp as the origin of our reference system so that x0 = 0.
Now, let´s calculate the speed of the person walking on the ground:
x = v * t
120 m = v * 72 s
v = 120 m / 72 s
v = 1.7 m/s
If you walk on the ramp with that speed, your total speed will be your walking speed plus the speed of the ramp because both are in the same direction. Then, using the equation for the position:
x = v * t
In this case, v = speed of the ramp + walking speed
v = 2.2 m/s + 1.7 m/s = 3.9 m/s
120 m = 3.9 m/s * t
t = 120 m / 3.9 m/s = 30.8 s
It will take you 30.8 s to travel the 120 m
Answer:
Potential energy will be
Explanation:
We have given the height of the basin is h = 6 m
Area of the basin 
Volume 
Density 
We know that mass is given by 
We know that potential energy is given by 
Answer:
a)
b)
Explanation:
From the question we are told that
Speed of opposing player 
First player chase his opponent after
Acceleration of first player 
Let time of catch be 
a)Generally the Equation for distance covered is mathematically given as follows
Distance to catch First opponent


Distance to covered Second opponent

Generally when first opponent catch the second opponent it is represented mathematically as





b)Generally the the total time traveled by the first opponent is mathematically given as


