Answer:
Only white phosphorus is stored under water. White phosphorus spontaneously reacts with oxygen in the air to burst into flame to form phosphorus pentoxide
Explanation:
(cm3) is a commonly used unit of volume that extends the derived SI-unit cubic metre, and corresponds to the volume of a cube that measures 1 cm × 1 cm × 1 cm.
so the answer is volume
Answer:
Ka = ( [H₃O⁺] . [F⁻] ) / [HF]
Explanation:
HF is a weak acid which in water, keeps this equilibrium
HF (aq) + H₂O (l) ⇄ H₃O⁺ (aq) + F⁻ (aq) Ka
2H₂O (l) ⇄ H₃O⁺ (l) + OH⁻ (aq) Kw
HF is the weak acid
F⁻ is the conjugate stron base
Let's make the expression for K
K = ( [H₃O⁺] . [F⁻] ) / [HF] . [H₂O]
K . [H₂O] = ( [H₃O⁺] . [F⁻] ) / [HF]
K . [H₂O] = Ka
Ka, the acid dissociation constant, includes Kwater.
Answer:
"Anion" is correct option
Explanation:
An anion is an ion that has gained one or more electrons, acquiring a negative charge.
Answer:
(R)-but-3-en-2-ylbenzene
Explanation:
In this reaction, we have a very <u>strong base</u> (<em>sodium ethoxide</em>). This base, will remove a hydrogen producing a double bond. We know that the reaction occurs through an <u>E2 mechanism</u>, therefore, the hydrogen that is removed must have an <u>angle of 180º</u> with respect to the leaving group (the "OH"). This is known as the <u>anti-periplanar configuration</u>.
The hydrogen that has this configuration is the one that placed with the <u>dashed bond</u> (<em>red hydrogen</em>). In such a way, that the base will remove this hydrogen, the "OH" will leave the molecule and a double bond will be formed between the methyl and the carbon that was previously attached to the "OH", producing the molecule (R) -but-3- en-2-ylbenzene.
See figure 1
I hope it helps!