A i hope that helped i love you guys have a great day
And merry chrismas
The top one does because there are more and it’s closer
Kepler's
third law shows the relationship between the orbital period of an object and
the distance between the object and the object it orbits.
The
simplified version of this law is: P^2 = a^3
Where,
P =
period of the orbit in years = 0.62 years
a =
average distance from the object to the object it orbits in AU. The
astronomical unit AU is a unit of length which is roughly equivalent to the
distance from Earth to the Sun.
Therefore
calculating for a:
0.62
^ 2 = a ^ 3
a =
0.62 ^ (2/3)
a =
0.727 AU = 0.72 AU
Therefore we can interpret this as: The distance from Venus to the Sun is about 72% of the distance from Earth to
Sun.
<span>Answer:
B. 0.72 AU</span>
The equilibrium constant, Kc=0.026
<h3>Further explanation</h3>
Given
1.72 moles of NOCI
1.16 moles of NOCI remained
2.50 L reaction chamber
Reaction
2NOCI(g) = 2NO(g) + Cl2(g).
Required
the equilibrium constant, Kc
Solution
ICE method
2NOCI(g) = 2NO(g) + Cl2(g).
I 1.72
C 0.56 0.56 0.28
E 1.16 0.56 0.28
Molarity at equilibrium :
NOCl :

NO :

Cl2 :

![\tt Kc=\dfrac{[NO]^2[Cl_2]}{[NOCl]^2}\\\\Kc=\dfrac{0.224^2\times 0.112}{0.464^2}=0.026](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BNO%5D%5E2%5BCl_2%5D%7D%7B%5BNOCl%5D%5E2%7D%5C%5C%5C%5CKc%3D%5Cdfrac%7B0.224%5E2%5Ctimes%200.112%7D%7B0.464%5E2%7D%3D0.026)
Answer:
The concentration of the murexide solution is 0.0000745 M
Explanation:
From Beer-Lambert's law,
A = εlc
A = Absorbance = 28.65% = 0.2865
ε = molar absorptivity = 3847 M/cm
l = path length = 1cm
c = concentration in mol/L = ?
c = A/εl = 0.2865/(3847×1) = 0.0000745 mol/L
Hope this Helps!