High temperature and pressure produce the highest rate of reaction. However, this must be balanced with the high cost of the energy needed to maintain these conditions. Catalysts increase the rate of reaction without affecting the yield. This can help create processes which work well even at lower temperatures.
I hope this helps you.
Here we have to get the item which has more thermal energy among the given options.
The item a) will have more thermal energy than b)
The thermal energy of a compound can be determined from the formula H = m×s×t (H = thermal energy, m = mass of the compound, s = specific heat of the compound, t = temperature)
a) Here m = 500 g, s = 1 g/mL and t = 50⁰C (as the density of water is 1 g/mL thus its volume is equivalent to its mass)
Thus the thermal energy H = 500 × 1 × 50 = 25000 Cal (The energy needed to raise 1⁰C temperature of 1g water is calorie unit)
similarly,
b) Here m = 100 g, s = 1 g/mL and t = 50⁰C (as the density of water is 1 g/mL thus its volume is equivalent to its mass)
Thus the thermal energy H = 100 × 1 × 50 = 5000 Cal (The energy needed to raise 1⁰C temperature of 1g water is calorie unit).
Thus option a) i.e. 500 mL of water at 50 degree Celsius will have more thermal energy.
Thus the thermal energy of both the item have calculated and compared.
Answer:
The 3rd answer or NCI is the correct answer
Explanation:
Hope this helps:)
B. static friction occurs.
Explanation:
When a body is pushed and it does not move, static friction has occurred.
Static friction is a type of friction that keeps a body at rest. It must be overcome before a body at rest can start moving.
- An object in motion experiences a sliding friction.
- Friction is generally defined as the resistance to motion of a body.
- In fluids, it is generally experienced as the viscosity.
- Static friction is the strongest of all the friction.
Learn more:
Friction brainly.com/question/7174363
#learnwithBrainly