There are three variables independent, dependent ,and controlled
When the charged balloon is brought near the wall, it repels some of the negatively charged electrons in that part of the wall. Therefore, that part of the wall is left repelled.
<u>Explanation</u>:
- Balloons don't stick to walls. However, if you rub the balloon on an appropriate piece of material such as clothing or a wall, electrons are pulled from the other material to the balloon.
- The balloon now as more electrons than normal and therefore has an overall negative charge. Two balloons like this will repel each other.
- The other material now has an overall positive charge. Because opposite charges attract, the balloon will now appear to stick to the other material. If you didn't rub the balloon first, it's charge would be neutral and it wouldn't stick to the wall.
Answer:
ΔH°rxn = -47 kJ
Explanation:
Using Hess´s law for the reaction:
3 Fe2O3(s) + CO(g) → 2 Fe3O4(s) + CO2(g) ,
the ΔH°rxn will be given by the expression:
ΔH°rxn kJ = 2ΔHºf(Fe3O4) + ΔHºf(CO2) - ( 3ΔHºf(Fe2O3) + ΔHºf(CO) )
= 2(-1118) + (-394) - ( 3( -824 ) + ( -111 ) )
= - 47 kJ
Answer:
24 mol Cu
General Formulas and Concepts:
<u>Chemistry</u>
Explanation:
<u>Step 1: Define</u>
RxN: 2Cu (s) + O₂ (g) → 2CuO (s)
Given: 12 moles O₂
<u>Step 2: Stoichiometry</u>
<u />
= 24 mol Cu
<u>Step 3: Check</u>
<em>We are given 2 sig figs.</em>
Our final answer is in 2 sig figs, so no need to round.
Answer:
Fossil B
Explanation:
Fossil B is older because it's later is at the bottom