1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ch4aika [34]
3 years ago
7

For f(x)=1/x-5 and g(x)=x^2+2 find (gof)(6)

Mathematics
1 answer:
nataly862011 [7]3 years ago
5 0
(gof)(6)=g(f(6))=(1/(6-5))^2+2=(1/1)^2+2=1+2=3

answer is 3
You might be interested in
Vanessa exercised by walking around a pond. One day, she walked 3 3/8 mi. The distance around the pond is 3/8 mi.
REY [17]

Let n be the number of times she walked around the pond

(3 3/8) / (3/8) = n

=> 9 = n

Vanessa walked around the pond 9 times

7 0
3 years ago
Read 2 more answers
Factor out the greatest common factor. 10a3b−6a2b2
podryga [215]

Answer:

2a^2b(5a-3b)

If not then the other way is

5a-3b

Step-by-step explanation:

The GCF of 10a^3b and -6a^2b^2 is 2a^2b

So divide by that you will get

2a^2b(5a-3b)

4 0
3 years ago
A grocer has two kinds of tea, one selling for 80 cents per pound and the other selling for 60 cents per pound. How many pounds
ruslelena [56]
X*80+y*60= 50*74
x      +y      =50            | * ( -60)

80x  + 60y= 50*74
-60x  - 60y=-50*60
---------------------------
20x= 50*(74-60)=50*14
x=50*14/20=35 pounds of 80 cents tea
y=50-35=15 pounds of 60 cents tea
8 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
39. The equation of a line in standard form is
Harman [31]

Answer:

Let's solve for x.

4x−2y=20

Step 1: Add 2y to both sides.

4x−2y+2y=20+2y

4x=2y+20

Step 2: Divide both sides by 4.

4x/4

=  2y+20/4

x=  1/2y+5

Answer: x=  1/2y+5

6 0
3 years ago
Other questions:
  • Kylie has already jarred 18 liters of jam and will jar an additional 5 liters of jam every day. How much jam did Kylie jar if sh
    12·1 answer
  • PLS PLS PLS help I am rly confused
    11·1 answer
  • i'd really appreciate it if you guys would stop giving me answers with no explanation. because when i get answers like that, the
    14·1 answer
  • A football team receives a 5-yard penalty on one play and a 10-yard penalty on the next. Write a number sentence to represent th
    11·1 answer
  • Please help w graphing <br> Thank u !
    5·1 answer
  • How to simplify this ......​
    8·2 answers
  • Write an expression that models the situation. Ruben has 83 red peppers and g green peppers. What is the total amount of peppers
    9·1 answer
  • What is the area of this parallelogram
    9·1 answer
  • Identify the classifications to which this figure belongs. You must select all that apply.
    7·2 answers
  • DUE SOON PLEASE HELP
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!