1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
3 years ago
5

a person walks 750m due north then 250 m due east of the entire walk takes 12 min find the person average velocity​

Physics
1 answer:
Virty [35]3 years ago
6 0

Answer:

v = 1.098 m/s

Explanation:

Given that,

A person walks 750m due north then 250 m due east of the entire walk takes 12 min.

We need to find the average velocity of the person.

Displacement,

d=\sqrt{750^2+250^2} \\\\d=790.56\ m

Average velocity = displacement/time

v=\dfrac{790.56\ m}{12\times 60\ s}\\\\v=1.098\ m/s

So, the average velocity of the person is 1.098 m/s.

You might be interested in
A 4.6-kg block of ice originally at 263 K is placed in thermal contact with a 15.7-kg block of silver (cAg = 233 J/kg-K) which i
Viktor [21]

Answer:

temperature at  326.44 K system achieve equilibrium

Explanation:

given data

mass of block of ice = 4.6 kg

temperature = 263 K

thermal contact =  15.7-kg

specific heat of silver  cAg = 233 J/kg-K

initially temperature = 1052 K

to find out

what temperature will the system achieve equilibrium

solution

first we consider final temperature of the system  is T

we know that specific heat of water (C w) = 4186 J(kg K)

and

specific heat of ice ( C i )  = 2030 J/(kg K)

and

latent heat of fusion of ice ( Lf ) = 3.33 × 10^{5} J/kg

and we know that system is insulated

so  heat lost by silver = heat generated by ice    .................1

so we can say

mass of silver × specific heat of silver  × ( initial temp - final temp ) = mass of  ice × specific heat of ice  × ( ice temp ) + mass of  ice × latent heat of fusion of ice + mass of  ice × specific heat of water  × (final temperature )  

put here value we get

mass of silver × specific heat of silver  × ( initial temp - final temp ) = mass of  ice × specific heat of ice  × ( ice temp ) + mass of  ice × latent heat of fusion of ice + mass of  ice × specific heat of water  × (final temperature )

15.7  × 233 × ( 1052 - T ) = 4.6 × 2030 × 10 + 4.6 × 3.33 × 10^{5} + 4.6 × 4286 × ( T - 273 )

solve we get

T =  326.44 K

so temperature at  326.44 K system achieve equilibrium

7 0
3 years ago
How do you calculate mass using Newton’s 2nd Law?
deff fn [24]
The 2nd Law says F=ma, where F is the force in Newtons, m is mass and a is acceleration.  Earth's gravity is an acceleration, 9.8m/s^2.  So you can solve the equation for mass, m=F/a, or m=F/9.8 where you've measured the force (weight) in Newtons.
5 0
3 years ago
Read 2 more answers
describe what happens to the arrangement of water molecules as ice is\to liquid to vapor be sure to explain the temperature chan
alex41 [277]
Water freezes at the freezing point to ice then melts to the melting turning it to liquid and vapor causing gas in precipitation
8 0
3 years ago
A coil of 160 turns and area 0.20 m2 is placed with its axis parallel to a magnetic field of initial magnitude 0.40 T. The magne
ser-zykov [4K]

Answer:

The rate at which power is generated in the coil is 10.24 Watts

Explanation:

Given;

number of turns of the coil, N = 160

area of the coil, A = 0.2 m²

magnitude of the magnetic field, B = 0.4 T

time for field change = 2 s

resistance of the coil, R =  16 Ω

The induced emf in the coil is calculated as;

emf = dΦ/dt

where;

Φ is magnetic flux = BA

emf = N (BA/dt)

emf = 160 (0.4T x 0.2 m²)/dt

emf = 12.8 V/s

The rate power is generated in the coil is calculated as;

P = V²/ R

P = (12.8²) / 16

P = 10.24 Watts

Therefore, the rate at which power is generated in the coil is 10.24 Watts

8 0
3 years ago
A mass-spring system has k = 56.8 N/m and m = 0.46 kg.
andriy [413]

Answer:

A. \omega=11.1121\ rad.s^{-1}

B. f=1.7685\ Hz

C. T=0.5654\ s

Explanation:

Given:

  • spring constant, k=56.8\ N.m^{-1}
  • mass attached, m=0.46\ kg

A)

for a spring-mass system the frequency is given as:

\omega=\sqrt{\frac{k}{m} }

\omega=\sqrt{\frac{56.8}{0.46}}

\omega=11.1121\ rad.s^{-1}

B)

frequency is given as:

f=\frac{\omega}{2\pi}

f=\frac{11.1121}{2\pi}

f=1.7685\ Hz

C)

Time period of a simple harmonic motion is given as:

T=\frac{1}{f}

T=0.5654\ s

7 0
3 years ago
Other questions:
  • Plz help
    12·1 answer
  • a child hits a ball with a force of 350 N. (a) If the ball and bat are in contact for 0.12 is, what impulse does the ball receiv
    15·1 answer
  • A boy is whirling a stone around his head by means of a string. The string makes one complete revolution every second; and the m
    8·1 answer
  • (x) A change in position is called:
    13·1 answer
  • If the mass of a material is 114 grams and the volume of the material is 13 cm3, what would the density of the material be?
    11·1 answer
  • Which property of potential energy distinguishes it from kinetic energy?
    7·2 answers
  • A student stays at her initial position for a bit of time, then walks slowly in a straight line for a while, then stops to rest
    13·1 answer
  • A peacock is flying around and its velocity
    8·1 answer
  • 2 Points
    13·2 answers
  • A donkey pulls a crate up a rough, inclined plane at constant speed. Which one of the following statements concerning this situa
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!