Acceleration = change in velocity/time
= 40/5
=8m/s^2
Answer:
No, it is impossible
Explanation:
Kinematics equation:

if height is maximum:
y=H and Vf=0
so:
<h3>

</h3><h3>

</h3>
Analysis: From the last equation we see that the maximum height depends ONLY on the initial speed. This means that if both objects reach the same maximum height, then they necessarily need to have the SAME initial velocity. If they have the same initial velocity and in order to reach the maximum height at the SAME time the only way is that they are released at the SAME TIME.
Answer:
the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
Explanation:
Following Newton's second law:
net force = mass * acceleration = weight/gravity * acceleration
then denoting 1 and 2 as the first and second lift
F₁ - w= w/g *a₁
F₂ -w = w/g *a₂ = w/g * 2.07a
dividing both equations
(F₂- w)/(F₁ -w)= 2.07
(F₂- w) = 2.07 * (F₁ -w)
1.07*w = 2.07*F₁ - F₂
w = (2.07*F₁ - F₂ )/ 1.07
replacing values
w = (2.07*61.1 N - 70.9 N )/ 1.07 = 51.94 N
then the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
The answer is "False". The force acting on the object is 27 N.
According to Newton's second law, when a force <em>F</em> acts on am object of mass <em>m</em>, it produces an acceleration <em>a</em>. The force is given by the expression,

Thus, if the body has a mass of 9.0 kg and if it has an acceleration of 3 m/s², then, on substituting the values in the equation for force,

Thus, it can be seen that the force acting on the body is 27 N and not 3 N as is mentioned in the statement. Hence the statement is false.
It's important to know that diffraction gratings can be identified by the number of lines they have per centimeter. Often, more lines per centimeter is more useful because the images separation is greater when this happens. That is, the distance between lines increases.
<h2>Therefore, the answer is 2.</h2>