The number of moles in a substance indicates the amount of the substance that contains the same number of particles as 12 g of the Carbon-12 isotope [or equivalent to 6.02 × 10²³] (which is used as a standard in the world of moles).
Now,
if 6.02 × 10²³ atoms are found in 1 mole ofsodium
then let 9.76 × 10¹² atoms are found in x
⇒ x = (9.76 × 10¹² ) ÷ (6.02 × 10²³)
= 1.619 × 10⁻¹¹ mol
Now, mass = moles × molar mass
∴ mass of Na = 1.619 × 10⁻¹¹ mol × 23 g/mol
= 3.72 × 10⁻¹⁰ g
Answer:
The concentration of chloride ions in the final solution is 3 M.
Explanation:
The number of moles present in a solution can be calculated as follows:
number of moles = concentration in molarity * volume
In 100 ml of a 2 M KCl solution, there will be (0.1 l * 2mol/l) 0.2 mol Cl⁻
For every mol of CaCl₂, there are 2 moles of Cl⁻, then, the number of moles of Cl⁻ in 50 l of a 1.5 M solution will be:
number of moles of Cl⁻ = 2 * number of moles of CaCl₂
number of moles of Cl⁻ = 2 ( 50 l * 1.5 mol / l ) = 150 mol Cl⁻
The total number of moles of Cl⁻ present in the solution will be (150 mol + 0.2 mol ) 150.2 mol.
Assuming ideal behavior, the volume of the final solution will be ( 50 l + 0.1 l) 50.1 l. The molar concentration of chloride ions will be:
Concentration = number of moles of Cl⁻ / volume
Concentration = 150.2 mol / 50.1 l = 3.0 M
The rate of a chemical reaction can be raised by increasing the surface area of a solid reactant. This is done by cutting the substance into small pieces, or by grinding it into a powder.
The correct answer is Gamma decay. It happens after beta and alpha decay
because what's left after those two can enter a new process of gamma
decay. This releases gamma rays which is a more complex term for the
photons that you mentioned before. These rays can be dangerous for
humans so care not to get caught in them.