The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V
<u>Explanation:</u>
Given data,
E= 3 ×10 ⁶ Δx=0.06/100
We have to find the minimum potential difference
E= -ΔV/Δx
ΔV=- E × Δx
ΔV =-3 ×10 ⁶ . 0.06/100
ΔV=-1800 V
The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V
Answer:
67
Explanation:
- The atomic number (Z) of an atom is equal to the number of protons in the nucleus
- The mass number (A) of an atom is equal to the sum of protons and neutrons in the nucleus
Therefore, calling p the number of protons and n the number of neutrons, for element X we have:
Z = p = 23
A = p + n = 90
Substituting p=23 into the second equation, we find the number of neutrons:
n = 90 - p = 90 - 23 = 67
Speed of particle B is 2v₀/3 m/s to the left. Particle A and particle B will always have equal speed since they experience equal forces.
<h3>Conservation of energy</h3>
The speed and direction of the particle B is determined by applying the principle of conservation of energy as follows;
K.E₁ + P.E₁ = K.E₂ + P.E₂


At any given position, the speed of particle A and particle B will be equal, since they experience equal force and they have equal masses.
The complete question is below:
Particle A and particle B, each of mass M, move along the x-axis exerting a force on each other. The potential energy of the system of two particles assosicated with the force is given by the equation U=G/r 2, where r is the distance between the two particles and G is a positive constant. At time t=T1 particle A is observed to be traveling with speed 2vo/3 to the left. The speed and direction of motion of particle B is ?
Learn more about conservation of energy here: brainly.com/question/166559
You have to divide the pressure exerted by the air into two partial pressures: of the dry air and of the water vapor. Combining these two values gives you the parameter.