The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back
Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C
<span>protection from injustices</span>
Answer:
Explanation:
any law stating that some quantity or property remains constant during and after an interaction or process, as conservation of charge or conservation of linear momentum.
Explanation:
Substances with their density less than that of water which is 1 g/cm³ will float on it whiles those greater than that of water will sink into the water
From the question the density of the object is greater than that of water so the object will sink into the water
Hope this helps you