The correct match of each item to the clean water regulation it describes is as follows:
- Regulates pollutants discharged into surface waters: Clean water act
- Covers both surface and ground waters: Safe drinking water act
- Authorizes the EPA to establish minimum standards for tap water: Safe drinking water act
- Funds sewage treatment plants: Clean water act
<h3>What are the functions of clean water regulation?</h3>
Clean Water Act (CWA) is a regulatory body that establishes the basic structure for the regulation of pollutants discharge and maintenance of quality standards of the surface waters.
On the other hand, the Safe Drinking Water Act was founded to oversee the protection of the quality drinking water. The regulatory body is primarily concerned with potable water all waters, whether from above ground or underground sources.
Therefore, the correct match of each item to the clean water regulation it describes is as follows:
- Regulates pollutants discharged into surface waters: Clean water act
- Covers both surface and ground waters: Safe drinking water act
- Authorizes the EPA to establish minimum standards for tap water: Safe drinking water act
- Funds sewage treatment plants: Clean water act
Learn more about clean water regulation at: brainly.com/question/2142268
#SPJ1
Answer:
I will but can you just wait for some minutes cus I am in a hurry now.
sorry that pic is a little blurry
Answer:
True
Explanation:
Pressure is defined as:

where
F is the magnitude of the force perpendicular to the surface
A is the surface
Therefore, pressure is inversely proportional to the area of the surface:

this means that, assuming that the forces in the two situations (which have same magnitude) are both applied perpendicular to the surface, the force exerted over the smaller area will exert a greater pressure. Hence, the statement"
<em>"A force acting over a large area will exert less pressure per square inch than the same force acting over a smaller area"</em>
is true.
Supposing that the spring is un stretched when θ = 0, and has a toughness of k = 60 N/m.It seems that the spring has a roller support on the left end. This would make the spring force direction always to the left
Sum moments about the pivot to zero.
10.0(9.81)[(2sinθ)/2] + 50 - 60(2sinθ)[2cosθ] = 0 98.1sinθ + 50 - (120)2sinθcosθ = 0 98.1sinθ + 50 - (120)sin(2θ) = 0
by iterative answer we discover that
θ ≈ 0.465 radians
θ ≈ 26.6º
Explanation:
a straight line under the letter