Answer:
(a) x0 = 0m and y0 = 49.0m
(b) Vox = 15.0m/s Voy = 0m/s
(c) Vx = Vo = 15.0m/s and Vy = -gt
(d) X = 15.0t and y = 49.0 - 4.9t²
(e) t = 3.16s
(f) Vf = 34.4m/s
Explanation:
I think it is option (C).
If the answer is helpful then mark me as brainly.
Answer:
The following explanatory section gives an explanation of this question.
Explanation:
- This means that perhaps the bubble moves more than a certain duration throughout the calibration breath meter offers the rate as well as oxygenation consumed inside this cell.
- Inside that respirometer, oscillation of something like the bubble gave a technique of multiplying the quantity of oxygenation that is used by the seedlings mostly through cell membrane breathing.
-- pick a planet from the table
-- take it's mass and radius from the table, and plug them into the big ugly formula above the table
-- do the arithmetic with your pencil or your calculator. The answer is the acceleration of gravity on the planet you picked. Write it down so you don't lose it.
-- do the same for the other 3 planets in the table
The tank pressure is 5.08 kPa and the mass flow rate is 2.6 kg/s.
The given parameters:
- <em>Throat area of the nozzle, </em>
<em> = 10 cm² = 0.001 m²</em> - <em>The exit area of the nozzle, A = 28.96 cm² = 0.002896 m²</em>
- <em>Air pressure at sea level = 101.325 kPa</em>
The ratio of the areas of the converging-diverging nozzle is calculated as follows;

From supersonic isentropic table, at
, we can determine the following;

The tank pressure is calculated as follows;

Thus, the tank pressure is 5.08 kPa and the mass flow rate is 2.6 kg/s.
Learn more about converging-diverging nozzle design here: brainly.com/question/13889483