Answer:
70.07 Hz
Explanation:
Since the sound is moving away from the observer then
and
when moving towards observer
With
of 76 then taking speed in air as 343 m/s we have


Similarly, with
of 65 we have

Now

v_s=27.76 m/s
Substituting the above into any of the first two equations then we obtain

Answer:
car B will be 30 Km ahead of car A.
Explanation:
We'll begin by calculating the distance travelled by each car. This is illustrated below:
For car A:
Speed = 40 km/h
Time = 3 hours
Distance =?
Speed = distance / time
40 = distance / 3
Cross multiply
Distance = 40 × 3
Distance = 120 Km
For car B:
Speed = 50 km/h
Time = 3 hours
Distance =?
Speed = distance / time
50 = distance / 3
Cross multiply
Distance = 50 × 3
Distance = 150 Km
Finally, we shall determine the distance between car B an car A. This can be obtained as follow:
Distance travelled by car B (D₆) = 150 Km
Distance travelled by car A (Dₐ) = 120 Km
Distance apart =?
Distance apart = D₆ – Dₐ
Distance apart = 150 – 120
Distance apart = 30 Km
Therefore, car B will be 30 Km ahead of car A.
Answer:
0.83999 m
0.20999 m
Explanation:
g = Acceleration due to gravity = 9.81 m/s² = a
s = 189 cm

When the time intervals are equal, if four drops are falling then we have 3 time intervals.
So, the time interval is

For second drop time is given by

Distance from second drop

Distance from second drop is 0.83999 m
Distance from third drop

Distance from third drop is 0.20999 m
Answer:
(a). Z = 54.54 ohm
(b). R = 36 ohm
(c). The circuit will be Capacitive.
Explanation:
Given data
I = 2.75 A
Voltage = 150 V
rad = 48.72°
(a). Impedance of the circuit is given by


Z = 54.54 ohm
(b). We know that resistance of the circuit is given by

Put the values of Z &
in above formula we get

R = 36 ohm
(c). Since the phase angle is negative so the circuit will be Capacitive.