In the process of peppering the question with those forty (40 !) un-necessary quotation marks, you neglected to actually show us the illustration. So we have no information to describe the adjacent positions, and we're not able to come up with any answer to the question.
Answer A is incorrect
A crest is just one point. It is not the distance between 2 crests.
B is incorrect
A trough is just 1 point. It is not the distance between 2 troughs.
C is incorrect.
the amplitude measures the height of a crest from the middle of the wave to the crest (or trough).
D is the correct answer. That is the distance between 2 crests or 2 troughs
Kinetic energy is the energy possessed by a body while in motion. It is calculated by 1/2mv², where m is the mass of the body and v is the velocity.
Therefore, kinetic energy is dependent on both mass of the body and the velocity. An increase in mass increases the kinetic energy, an increase in velocity also increases kinetic energy of the body. Thus, doubling the mass and doubling the velocity will both increase the kinetic energy of the body.
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:

Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:

This frequency is close to the note E₆ (1,318.5 Hz)
Answer:
The atoms are aligned in a particular direction
Explanation:
The atoms become aligned in a particular direction in regions called domains, thus resulting in an overall resultant magnetism due to the spin of the electrons.