The question is: You have 500g of ethyl alcohol at a temperature of -40 ° C. How much heat is needed to transform it into steam at a temperature of 150ºC?
Answer: 233700 J heat is needed to transform ethyl alcohol into steam at a temperature of
to
.
Explanation:
Given: Mass = 500 g
Initial temperature = 
Final temperature = 
The standard value of specific heat of ethyl alcohol is
.
Formula used to calculate the heat energy is as follows.

where,
q = heat energy
m = mass of substance
C = specific heat
= initial temperature
= final temperature
Substitute the values into above formula as follows.
![q = m \times C \times (T_{2} - T_{1})\\= 500 g \times 2.46 J/g^{o}C \times [150 - (-40)]^{o}C\\= 233700 J](https://tex.z-dn.net/?f=q%20%3D%20m%20%5Ctimes%20C%20%5Ctimes%20%28T_%7B2%7D%20-%20T_%7B1%7D%29%5C%5C%3D%20500%20g%20%5Ctimes%202.46%20J%2Fg%5E%7Bo%7DC%20%5Ctimes%20%5B150%20-%20%28-40%29%5D%5E%7Bo%7DC%5C%5C%3D%20233700%20J)
Thus, we can conclude that 233700 J heat is needed to transform ethyl alcohol into steam at a temperature of
to
.
B Longitude
Explanation:
The line of longitude or longitude does not affects climates.
Climate is the weather condition over a place for a long period of time. It usually takes several years to delineate the climate of an area.
- Longitude is the distance on the earth surface that runs form east to west.
- All lines of longitude are all great circles.
- Latitude are lines from north to south on the earth surface. Only the equator is a great circle.
- Latitude affects climate. In fact based on the division of lines of latitude on can predict climatic patterns on earth.
- Proximity to water bodies also affects climatic condition because of the effect of land and sea breeze and other climatic factors.
- Elevation affects climate a whole lot. Physiography of a place determines the weather to a very large extent.
learn more:
Climate brainly.com/question/10856870
#learnwithBrainly
Answer:
10.93 rad/s
Explanation:
If we treat the student as a point mass, her moment of inertia at the rim is

So the system moment of inertia when she's at the rim is:

Similarly, we can calculate the system moment of inertia when she's at 0.456 m from the center

We can apply the law of angular momentum conservation to calculate the post angular speed when she's 0.456m from the center:

