I believe the correct answer from the choices listed above is the last option. If the volatility of X is higher than that of Y, then <span>Y’s molecules experience stronger London dispersion forces than X’s molecules. All molecules has london dispersion forces. Also, the stronger the bond, the harder it is to volatilize. Hope this answers the question.</span>
I attached a picture of the diagram associated with this question.
Now,
When we check the vertical components of the tension in the rope, we will find that we have two equal components acting upwards.
These two components support the weight and each of them has a value of TcosΘ
The net force acting on the body is zero.
Fnet=Force of tension acting upwards-Force due to weight acting downwards
0 = 2TcosΘ -W
W = 2TcosΘ
T = W / 2cosΘ
It often requires STANDARD reaction time
Answer:
different number of mass numbers.
Explanation:
isotopes are atoms of the same element having the same atomic number but different mass numbers due to different number of neutrons.
Answer:
(1) Resonance
Explanation:
Resonance is the process whereby a system is set into vibration due to the vibration of a nearby system with larger amplitude. The frequency at which this vibration takes place is called the resonant frequency.
It is a phenomenon of amplification that occurs when the frequency of a periodically applied force is in harmonic proportion to the natural frequency of the system on which it acts.