Answer:
20.42 N/m
Explanation:
From hook's law,
F = ke ......................... Equation 1
Where F = Force applied to the spring., k = spring constant, e = extension.
Make k the subject of the equation,
k = F/e ................. Equation 2
Note: The force on the spring is equal to the weight of the mass hung on it.
F = W = mg.
k = mg/e................ Equation 3
Given: m = 250 g = 0.25 kg, e = 37-25 = 12 cm = 0.12 m.
Constant: g = 9.8 m/s²
Substitute into equation 3
k = (0.25×9.8)/0.12
k = 20.42 N/m.
Hence the spring constant = 20.42 N/m
i hate this question.
Conservation of momentum - is when the total momentum before and after collision is equal.
Here is the formula darling,
p = p
mv = mv
See the pic for example. HmpH
Answer:
Newton's third law of motion states that whenever a first object exerts a force on a second object, the first object experiences a force equal in magnitude but opposite in direction to the force that it exerts. ... Newton's third law is useful for figuring out which forces are external to a system.
Explanation:
is these what you're looking for?