Answer:
x(t)=0.337sin((5.929t)
Explanation:
A frictionless spring with a 3-kg mass can be held stretched 1.6 meters beyond its natural length by a force of 90 newtons. If the spring begins at its equilibrium position, but a push gives it an initial velocity of 2 m/sec, find the position of the mass after t seconds.
Solution. Let x(t) denote the position of the mass at time t. Then x satisfies the differential equation
Definition of parameters
m=mass 3kg
k=force constant
e=extension ,m
ω =angular frequency
k=90/1.6=56.25N/m
ω^2=k/m= 56.25/1.6
ω^2=35.15625
ω=5.929
General solution will be
differentiating x(t)
dx(t)=-5.929c1sin(5.929t)+5.929c2cos(5.929t)
when x(0)=0, gives c1=0
dx(t0)=2m/s gives c2=0.337
Therefore, the position of the mass after t seconds is
x(t)=0.337sin((5.929t)
Answer:
In physics, work is defined as the use of force to move an object. For work to be done, the force must be applied in the same direction that the object moves. Work is directly related to both the force applied to an object and the distance the object moves. <em>[I HOPE THIS HELPS* PLS MARK ME BRAINLIEST]</em>
C is the right answer :)
C. mass of the objects and the distance between two objects
Answer:
Option B is the correct answer.
Explanation:
Let us consider 40 meter above ground as origin.
Initial velocity = 17 m/s
Final velocity = 24 m/s
Acceleration = 9.81 m/s
We have equation of motion v² = u² + 2as
Substituting
24² = 17² + 2 x 9.81 x s
s = 14.63 m
Distance traveled by rock = 14.63 m down.
Height of rock from ground = 40 - 14.63 = 25.37 m = 25.4 m
Option B is the correct answer.
Answer:
Explanation:
Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.
To objective is to find the:
(i) required heat exchanger area.
(ii) flow rate to be maintained in the evaporator.
Given that:
water temperature = 300 K
At a reasonable depth, the water is cold and its temperature = 280 K
The power output W = 2 MW
Efficiency
= 3%
where;



However, from the evaporator, the heat transfer Q can be determined by using the formula:
Q = UA(L MTD)
where;

Also;




LMTD = 4.97
Thus, the required heat exchanger area A is calculated by using the formula:

where;
U = overall heat coefficient given as 1200 W/m².K

The mass flow rate:
