Answer: The frequency heard will be f = 275.675Hz
Explanation: When an object emitting sound is moving, it occurs a phenomenon called Doppler shift or Doppler effect. What happens is that the sound gets higher when the moving object comes closer the observer and becomes lower after it passes, This change is due to the quantity of waves that passes through an area in an unit of time.
The formula to calculate the Doppler effect is as follows
f = (
) · f₀
f is the observed frequency;
c is the speed of sound;
Vs is velocity of the source;
f₀ is the emitted frequency of source;
Substituting and calculating,
f =
· 300
f = 275.675 Hz
Thus, the frequency heard by the police officer is 275.675Hz.
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left
Answer:
I'm sorry but I dont really know this answer
Answer:
a) see attached, a = g sin θ
b)
c) v = √(2gL (1-cos θ))
Explanation:
In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by
Wₓ = m a
W sin θ = m a
a = g sin θ
b) The diagram is the same, the only thing that changes is the angle that is less
θ' = 9/2 θ
c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.
The easiest way to find linear speed is to use conservation of energy
Highest point
Em₀ = mg h = mg L (1-cos tea)
Lowest point
Emf = K = ½ m v²
Em₀ = Emf
g L (1-cos θ) = v² / 2
v = √(2gL (1-cos θ))
Answer:
A. Measurements are made with tools; observations are not
Explanation:
Measurement: <em>the assignment of numbers or codes according to prior-set rules. </em>
Observation: <em>data from an individual study subject or sampled unit.</em>
Measurement error: <em>differences between "true" answers and what appears on data collection instruments</em>
hope this helps
plz mark brainleist