1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonbull [250]
3 years ago
15

A ferris wheel is 35 meters in diameter and boarded from a platform that is 2 meters above the ground. The six o'clock position

on the ferris wheel is level with the loading platform. The wheel completes 1 full revolution in 6 minutes. The function h = f(t) gives your height in meters above the ground t minutes after the wheel begins to turn. Write an equation for h = f(t).
Physics
2 answers:
Drupady [299]3 years ago
6 0

Answer:

h=f(t)= -17.5cos(\pi /3)+20.5

Explanation:

Amplitude is 35/2=17.5

Midline= Distance from ground + Amplitude = 17.5+3= 20.5

Period is time taken to finish 6 minutes

2π/b=T

2π/b=6

b=π/3

h=f(t)= -17.5cos(\pi /3)+20.5

Pie3 years ago
5 0

Answer:

y = 2 + \frac{35}{2}(1 - cos(\frac{\pi}{3} t))

Explanation:

As we know that time period of the ferris wheel is given as

T = 6 min

so we have

\omega = \frac{2\pi}{T}

\omega = \frac{2\pi}{6} rad/min

\omega = \frac{\pi}{3} rad/min

now angular position at any time "t" is given as

\theta = \omega t

so the height as a function of time is given as

y = h_i + R - Rcos\theta

y = 2 + \frac{35}{2}(1 - cos(\frac{\pi}{3} t))

You might be interested in
Question 10 (2 points)
Stella [2.4K]

Answer:

gamma rays

Explanation:

8 0
3 years ago
What is it called when a reading is converted into computer language? computerizing surveying digitizing converting
disa [49]
Digitizing is the correct answer
3 0
3 years ago
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
What is the resistance of : A) A 1.70 m long copper wire that is 0.700 mm in diameter? B) A 20.0 cm long piece of carbon with a
astra-53 [7]

Answer:

(I). The resistance of the copper wire is 0.0742 Ω.

(II). The resistance of the carbon piece is 1.75 Ω.

Explanation:

Given that,

Length of copper wire = 1.70 m

Diameter = 0.700 mm

Length of carbon piece = 20.0 cm

Cross section areaA = (2.00\times10^{-3})^2\ m

(I). We need to calculate the area of copper wire

Using formula of area

A=\pi r^2

A=3.14\times(\dfrac{0.700\times10^{-3}}{2})^2

We need to calculate the resistance

Using formula of resistance

R=\dfrac{\rho l}{A}

Put the value into the formula

R=\dfrac{1.68\times10^{-8}\times1.70}{3.14\times(\dfrac{0.700\times10^{-3}}{2})^2}

R=0.0742\ \Omega

(II). We need to calculate the resistance

Using formula of resistance

R=\dfrac{\rho l}{A}

Put the value into the formula

R=\dfrac{3.5\times10^{-5}\times20\times10^{-2}}{(2.00\times10^{-3})^2}

R=1.75\ \Omega

Hence, (I). The resistance of the copper wire is 0.0742 Ω.

(II). The resistance of the carbon piece is 1.75 Ω.

8 0
3 years ago
What comes down but never goes up
White raven [17]

Answer:

Explanation:

rain and your age

5 0
3 years ago
Other questions:
  • A baseball is seen to pass upward by a window with a vertical speed of 13 m/s . The ball was thrown by a person 19 m below on th
    7·1 answer
  • Pnrjrjjrjrjrrmdmmdmdmdmdmdjd
    12·2 answers
  • The property that compares the mass of an object with its volume is _____.
    9·2 answers
  • The solid block shown here has a mass of 146 grams. What is the block’s density?
    9·1 answer
  • when a light bulb is turned on electrical energy is transformed into two other types of energy. What are they and support your a
    13·1 answer
  • The<br> of an object shows how fast the object is moving at a specific
    9·1 answer
  • If the net force acting on an object is 0 N, you can be sure thr forces acting on the object are,
    14·1 answer
  • How does a plane mirror work
    6·1 answer
  • When a electric current is passed threw water during electrolysis, 2 gases are formed. 1 gas has a boiling point of -183°C and t
    8·1 answer
  • Explain why it is not advisable to be in a garage when the car engine is being <br> heated.​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!