(C) 0.1 mole of NaCl dissolved in 1,000. mL of water
<u>Explanation:</u>
The conductivity of 0.1 mole of NaCl dissolved in 1000 mL of water will be greatest as the number of ions in 0.1 mole of NaCl will be more than 0.001, 0.05 and 0.005 moles of NaCl. Greater the number of ions in the solution, greater will be the conductivity. Specific Conductivity decreases with a decrease in concentration. Since the number of ions per unit volume that carry current in a solution decrease on dilution. Hence, concentration and conductivity are directly proportional to each other.
Answer:
Mass = 1.33 g
Explanation:
Given data:
Mass of argon required = ?
Volume of bulb = 0.745 L
Temperature and pressure = standard
Solution:
We will calculate the number of moles of argon first.
Formula:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
By putting values,
1 atm ×0.745 L = n × 0.0821 atm.L/mol.K× 273.15 K
0.745 atm. L = n × 22.43 atm.L/mol
n = 0.745 atm. L / 22.43 atm.L/mol
n = 0.0332 mol
Mass of argon:
Mass = number of moles × molar mass
Mass = 0.0332 mol × 39.95 g/mol
Mass = 1.33 g
Hey there! Let's get that problem solved!
First: Let's define, "solution."
Solution: <span>a liquid mixture in which the minor component (the solute) is uniformly distributed within the major component (the solvent).
Next: Ask yourself, "can a solution be taken apart?"
In some cases, yes. It can.
The solution of salt water for example, can be physically separated by evaporation. (place salt-water in a pot on a heated stove, place the cover to the pot on the opening, wait a few minutes, remove the top, and you can (and taste) the water without the salt!) </span><span />
I think is False! Because it is not example of a disaccharide it is not saccharin-aspartame molecule.