Answer: The actual reaction to make water is a bit more complicated: 2H2 + O2 = 2H2O + Energy. In English, the equation says: To produce two molecules of water (H2O), two molecules of diatomic hydrogen (H2) must be combined with one molecule of diatomic oxygen (O2). Energy will be released in the process.
Explanation:
Answer:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.
Explanation:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.
Answer:
Explanation:
The equation of the reaction is given as:
3H₂ + N₂ → 2NH₃
Given parameters:
Number of moles of NH₃ = 8moles
Number of moles of H₂ = ?
Number of moles of N₂ = ?
Solution
From the balanced reaction equation, we can establish some mole ratios that would help solve the problem:
To find the number of moles of H₂;
The equation shows that:
2 moles of NH₃ were produced using 3 moles of H₂
therefore: 8 moles of NH₃ will be produced by
= 12moles
So, 12 moles of hydrogen gas will react to give 8 moles of ammonia.
To find the number of moles of N₂
The equation shows that:
2 moles of NH₃ were produced from 1 mole of N₂
8 moles of NH₃ would be produced from
= 4moles of Nitrogen gas
Therefore, 4moles of nitrogen gas would be produced
6.3 ×

In scientific notation, the numerical value without the exponent of 10 must be within the range from 1 to just below 10 (for example, 9.99...). In this case, 6.3 is already within this range, so we just have to multiply it by 1. To get a multiplier of 1 using base 10, we would have to raise 10 to the zeroth power.