Answer:
P₂ = 394.4 KPa
Explanation:
Given data:
Volume of gas = 152 dm³
Pressure of gas = 98.6 KPa
Final pressure = ?
Final volume = quartered = 1/4×152 = 38 dm³
Solution:
P₁V₁ = P₂V₂
P₂ = P₁V₁/V₂
P₂ = 98.6 KPa . 152 dm³ / 38 dm³
P₂ = 14987.2 KPa. dm³ / 38 dm³
P₂ = 394.4 KPa
<h2>Project Reports</h2>
<h3>A) Mixture</h3>
This refers to the material that is made when different substances mix up physically and causes a reaction.
You can make on the project of Mixture -
- 1) Alloys
- 2)Colloids
- 3) Suspension
- 4) Solution
<h3>B) Compound</h3>
This refers to the chemical bond that holds different atoms tightly
You can make on the project of Compound -
- 1)Water
- 2)Methane
- 3)Carbon Dioxide
- 4) Sulfuric Acid
<h3>C) Elements</h3>
Based on the fact that the atom is the smallest indivisible part of an element, elements like phosphorous cannot be further broken down.
You can make on the project of Elements -
- 1) Mercury
- 2) Iron
- 3) Copper
- 4)Carbon
Read more about mixtures and compounds here:
brainly.com/question/491220
#SPJ1
Answer:
B) The molecules were closer together when the juice pop was frozen.
Answer:
The pressure in the gas is 656mmHg
Explanation:
In calculating the pressure of the gas;
step 1: convert the height of the mercury arm to mmHg
9.60cm = 96.0 mmHg
step 2: convert 752 torr to mmHg
I torr is 1 mmHg
752 torr = 752mmHg
Step 3: since the level of mercury in the container is higher than the level of mercury exposed to the atmosphere, we substrate the values to obtain our pressure.
So, 752mmHg - 96mmHg = 656mmHg
The pressure in the gas container is therefore 656mmHg.
N. B : if the mercury arm is in lower position, you add.
Answer: The de broglie wavelength is
.
Explanation:
Calculate
as follows.

where,
h = plank's constant = 
p = momentum = 
Putting the values in the formula as follows.

=
= 
Thus, the de broglie wavelength is
.