Answer:
276.135 J
Explanation:
Given that:
mass of Fe = 30.0 g
initial temperature = 24.5°C
final temperature = 45.0°C
specific heat of Fe = 0.449 J/g°C
We can determine the thermal energy added by using the formula;
Q = mcΔT
Q = 30.0g × 0.449 J/g°C × (45.0 - 24.5)°C
Q = 276.135 J
Given:
Sample 1:
Chloroform is 
12 g Carbon
1.01 g Hydrogen
106.4 g Cl
Sample 2:
30.0 g of Carbon
Solution:
mass of chloroform from sample 1:
12 + 1.01 +106.4 =119.41 g
Now, for the total mass of chloroform in sample 2:
mass of chloroform 

mass of chloroform = 119.41 
= 298.53 g
Answer:
60 km
Explanation:
For an object (or a person, such as in this case) moving at constant speed, the speed is equal to the ratio between the distance travelled and the time taken:
where
v is the speed
d is the distance
t is the time taken
In this case, we have:
v = 120 km/h is the speed
t = 30 min = 0.5 h is the time taken
Therefore, we can rearrange the equation to find the total distance travelled:
The distance from the horizontal top surface of the cube to the water level is "6.282 cm".
<h3>What is Archimedes' principle?</h3>
According to Archimedes' principle, the weight of the fluid that the body displaces is equal to the upward buoyant force that is applied to a body submerged in a fluid, whether fully or partially. The Archimedes' principle is a fundamental physical law in fluid mechanics. It was created by Syracuse's Archimedes.
According to Archimedes' principle, a body submerged in a fluid experiences an upward force proportional to the weight of the fluid that has been displaced. One of the prerequisites for equilibrium is this. We believe that the buoyancy force, also known as the centre of buoyancy, is situated in the middle of the submerged hull.
From Archimedes' principle, we get



=11.72cm
So,
The distance from horizontal top to the water level will be:
=18-11.72
=6.282cm
To learn more about Archimedes' principle refer to:
brainly.com/question/1155674
#SPJ4
Answer:
1.52m/s
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the final velocity
Substitute the given values into the formula
0.013(270)+2(130) = (270+130)v
3.51+260 = 400v
263.51 = 400v
v = 400/263.51
v = 1.52m/s
Hence the velocity after the bullet emerges is 1.52m/s