Answer:
0.8 seconds
Explanation:
F=ma
Let x be the seconds the force is applied.
m = 20kg
F = 50 Newtons (kg*m/sec^2)
acceleration, a, is provided for x seconds to increase the speed from 1 m/s to 3 m/s, an increase of 2m/s
Let's calculate the acceleration of the cart:
F=ma
(50 kg*m/s^2) = (20kg)*a
a = 2.5 m/s^2
---
The acceleration is 2.5 m/s^2. The cart increases speed by 2.5 m/s every second.
We want the number of seconds it takes to add 2.0 m/sec to the speed:
(2.5 m/s^2)*x = 2.0 m/s
x = (2.0/2.5) sec
x = 0.8 seconds
Answer:
22600 cm³ (3 s.f.)
Explanation:
Please see the attached picture for the full solution.
Answer:
<h3>b.fission. </h3>
Explanation:
<h3>Please mark my answer as a brainliest.Please follow me ❤❤❤</h3>
Answer:
(C) The frequency decrease and intensity decrease
Explanation:
The Doppler effect describes the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source, or the wave source is moving relative to the observer, or both.
if the observer and the source move away from each other as is the case for this problem, the wavelength heard by the observer is bigger.
The frequency is the inverse from the wavelength, so the frequency heard will increase.
The sound intensity depends inversely on the area in which the sound propagates. When the buzzer is close, the area is from a small sphere, but as the buzzer moves further away, the wave area will be from a larger sphere and therefore the intensity will decrease.
Personally I feel that never trying is worse because at least when you fail you know what you need to improve on and that way you at least get some closure. Where as when you never try it you would never know whether or not you were able to do it