(a) +9.30 kg m/s
The impulse exerted on an object is equal to its change in momentum:

where
m is the mass of the object
is the change in velocity of the object, with
v = final velocity
u = initial velocity
For the volleyball in this problem:
m = 0.272 kg
u = -12.6 m/s
v = +21.6 m/s
So the impulse is

(b) 155 N
The impulse can also be rewritten as

where
F is the force exerted on the volleyball (which is equal and opposite to the force exerted by the volleyball on the fist of the player, according to Newton's third law)
is the duration of the collision
In this situation, we have

So we can re-arrange the equation to find the magnitude of the average force:

The rate at which velocity changes is called acceleration. (Attensity exists when velocity varies.) If a moving object changes speed.
Why does time accelerate the rate at which velocity changes?
A motion's acceleration is the rate at which it changes from one velocity to another. A velocity's rate of change with respect to time is referred to as its acceleration. The amount and direction of acceleration are both properties of a vector quantity.
A change in velocity is known as what?
A velocity change's acceleration is measured. Acceleration is the measure of how quickly a velocity changes with time. The acceleration measure used in SI is M/s2.
To know more about velocity visit: brainly.com/question/18084516?
#SPJ4
Answer:
UAC CUG AGG AUC
Explanation:
<em>The mRNA sequence from ATG GAC TCC TAG DNA sequence would be </em><em>UAC CUG AGG AUC.</em>
<u>According to Chargaff's base pairing rule, the purine bases always pair with pyrimidine bases. Specifically, Adenine base must pair with Thymine base while Guanine base must pair with Cytosine base. In RNA, Thymine base is replaced with Uracil base.</u>
Hence:
ATG GAC TCC TAG will pair with
UAC CUG AGG AUC