Answer:

Explanation:
Given that :
mass of the SUV is = 2140 kg
moment of inertia about G , i.e
= 875 kg.m²
We know from the conservation of angular momentum that:

![mv_1 *0.765 = [I+m(0.765^2+0.895^2)] \omega_2](https://tex.z-dn.net/?f=mv_1%20%2A0.765%20%3D%20%5BI%2Bm%280.765%5E2%2B0.895%5E2%29%5D%20%5Comega_2)
![2140v_1*0.765 = [875+2140(0.765^2+0.895^2)] \omega_2](https://tex.z-dn.net/?f=2140v_1%2A0.765%20%3D%20%5B875%2B2140%280.765%5E2%2B0.895%5E2%29%5D%20%5Comega_2)



From the conservation of energy as well;we have :

^2 -2140(9.81)[\sqrt{0.76^2+0.895^2} -0.765]] =0](https://tex.z-dn.net/?f=%5B%5Cfrac%7B1%7D%7B2%7D%20%5B875%2B2140%280.765%5E2%2B0.895%5E2%29%5D%280.4262%20%5C%20v_1%29%5E2%20-2140%289.81%29%5B%5Csqrt%7B0.76%5E2%2B0.895%5E2%7D%20-0.765%5D%5D%20%3D0)






so your saying the start is 0 N and when he/she hits the ball its inertia is 3 N. if that is so m*v=
.05*3=<u>.15</u>
Options a to c can be the reasons for scientific models.
But to primarily answer scientific questions,that would require an empirical and experimental approach and not use of models.
Though after getting the answers, models can be built to further explain the answers.
<span>d. answer scientific questions.</span>