To determine the temperature of the gas, we need to assume ideal gas to use the equation PV=nRT where P represents the pressure, V is the volume, n is the number of moles, T is the temperature and R is the universal gas constant. We calculate as follows:
PV = nRT
T = PV / nR
T = (1.26 atm) ( 208 L ) / 0.08205 L-atm/mol-K ( 9.95 mol )
T = 321.02 K
Hope this answers the question.
Answer:
Some chemical indicators perceived while a piece of paper is burning are:
Production of an Odor: there is a smell of burnt paper
Change in Temperature: combustion is a highly exothermic reaction , so the temperature increase
Change in Color: paper changes to ashes as the burning process occurs
Moles of H₂ are needed to produce 9.33 moles of NH₃ : 13.995
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
The reaction coefficient in a chemical equation shows the mole ratio of the reactants and products
Reaction for the synthesis of ammonia :
N₂+3H₂⇒2NH₃
moles of NH₃ = 9.33
From equation, mol ratio of H₂ : NH₃ = 3 : 2, so mol H₂ :

Answer:
a) 2-bromopyrrole
Explanation:
Our options for this questions are:
a) 2-bromopyrrole
b) 2,3-dibromopyrrole
c) N-bromopyrrole
d) 3-bromopyrrole
To understand how the reaction works we have to start with the <u>resonance structures</u>. (Figure 1), on these structures, we will obtain a n<u>egative charge on carbon 2</u> in the pyrrole ring, therefore on this carbon we can generate an attack to an electrophile.
The second step is to check how the mechanism take place. An <u>electrophile is generated</u> by the
and
. This electrophile can be <u>attacked</u> by the negative charge on carbon 2 producing the 2-bromopyrrole. (See figure 2).
I hope it helps!
Answer:
Its main advantage is <em>they information fits on one line of text</em> <u>(thus works well when using the formula in paragraphs)</u>. Disadvantages are <em>they can be confusing for larger molecules</em>
<em />
hope this helps :3